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Abstract: In his book “Group Analysis of Differential Equations”,
Ovsiannikov poses a problem called the problem of reduction. Roughly
speaking, it asks for necessary and sufficient conditions under which
symmetry reduction, in a certain sense, is possible. When it {s, the con-
struction of non-invariant solutions — as well as of invariant ones — of
partial differential equations (PDEs) becomes easier. Thus a solution
of the reduction problem would be useful. A solution, under certain
assumptions that appear to be natural, is presented in this paper. The
method used indicates not only when the reduction is possible but also

how it can be carried out.
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1. Introduction

The purpose of this paper is to present a solution of the reduction prob-
lem (Ovsiannikov [12]) of Ovsiannikov under certain conditions that ap-
pear to be natural. To state the problem, let A = 0 be a system of partial
differential equations (PDEs) for ¢ unknowns uj,up,...,4, in p inde-
pendent variables z,, 23, ..., zp. We shall write z = (z1,2,...,Zp),u =
(u1,uz,...,ug). Let G be the full local Lie group of point symmetries
of the system. Thus G acts on the manifold M = R? x RY. Through-
out this paper, all objects — manifolds, mappings, vector fields — will
be assumed smooth. Also, all group actions considered will be local
and semiregular, i.e., for all points z in M on which G acts, the orbits
Gz = {gz|g € G} are submanifolds of M of locally constant dimension.
Let T be a solution manifold, defined implicitly by F(z,u) = 0, where
F:R? x RY = RY, F(z,u) = (F'(z,u),...,F9(z,u)), is assumed to
be of full rank. Let H C G be a Lie subgroup. Let & C I' be an open
set small enough that the submanifolds Hz,z € U, are all of the same
dimension. Since the group actions are local, we shall rename I as I'.
Ovsiannikov makes the assumption that HT' (the union of all the orbits
Hz, as z varies over I') is itself a manifold and calls it the orbit manifold.
By definition, then, HT is invariant under H, but in general I' is not
invariant under H. When I" is invariant under H, the corresponding so-
lution is called an invariant (or H-invariant) solution and I" an invariant
manifold. Given H and T, Ovsiannikov defines two quantities, namely
the defect § and the rank p as follows:

§ =4(I',H) =dim(HT) —dimT

and
p=pl,H) =dim(HT) —~dimHz, ze€Tl.

The defect § measures the extent to which I" fails to be invariant un-
der H. The rank p is the local codimension in HT of the orbit of a
single point in T, and this is equal to the maximal number (Olver (8],
Ovsiannikov [12]) of functionally independent H-invariant functions on
HT'. (Any smooth function defined on HT and invariant under H can
be expressed as a function of p functionally independent invariant func-
tions.) Ovsiannikov [12] has shown that if H' C H is a Lie subgroup
and if §' = §(T", H') and p’ = p(T', H') then §' < § and p' > p. From a
practical point of view, invariant solutions — corresponding to § =0 —
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are the easiest ones to construct: one can use Lie’s algorithm, as refined
by Ovsiannikov [12] and Olver [8]. If a solution is not invariant, the best
one can hope for is reducing the defect while keeping the rank the same.
This is what is meant by reduction in the sense of Ovsiannikov. We can
now state his

Reduction Problem: Given H and I' as defined above, what are
the necessary and sufficient conditions for the existence of a Lie subgroup
H'CHst. § <§andp' =p?

Before we state the assumptions under which the problem can be
solved, a couple of remarks are in order:

1. Reduction in the sense of Ovsiannikov is different from reduction
or reducibility as defined by one of us in earlier work (Sastri et al
[16, 18]) and as commonly understood in the literature. There, a
solution is called irreducible if there is no non-trivial subgroup of G
under which it is invariant. The difference is that in Ovsiannikov’s
case, control over two parameters — the rank and the defect — is
sought, whereas in our earlier definition, only one parameter, the
defect, matters. Therefore, to make the terminology compatible,
we let “rank-invariant reduction” mean reduction in the sense of
Ovsiannikov. Note further that while Ovsiannikov’s definition is
useful in determining whether a given solution is reducible, our
earlier definition is related to the question of whether a given sys-
tem of PDEs has irreducible solutions with respect to G. For an

example, see Quinn et al [14].

2. Ovsiannikov introduces the notion of a partially invariant solution
(Ovsiannikov [12]): T' is partially invariant if its defect is strictly
positive and if HT is not the whole of M. For our purposes, what
is of interest is a measure of the lack of invariance of a solution,
namely the defect, whatever it happens to be.

There has been considerable work on partial invariance (Bytev [1],
Ibragimov [3, 4], Martina et al [5, 6], Menéikov [7], Ondich [9], Ovsian-
nikov [11-13], Quinn et al [14], Rai and Sastri [15], Sastri et al [16-18],
Strampp [19]), but as far as we know, Ovsiannikov’s reduction problem
has not been addressed. Now, in order to state the conditions under
which we solve the problem, some notation is needed. Let g,h be the
Lie algebras of G and H, respectively. If w is a vector field in k, let
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h(z) = {w(z)|w € h}, z € I'. Then h(z) is a vector space; even if h is
infinite dimensional, h(z) is finite dimensional, since it is a subspace of
TM]|,, the tangent space of M at z, and dim(TM|;) =p+ q. Let H(T)
be the maximal Lie subgroup of H which leaves I" invariant. Clearly,
such a subgroup exists. For if I' is invariant under H, H(I') = H, and
if the only subgroup of H under which I' is invariant is the trivial sub-
group, then H(T') is the trivial subgroup. Otherwise, H(I') is a proper
subgroup of H. That it is a Lie group follows (Olver [8], Ovsiannikov
[12]) from the fact that if a manifold is invariant under the action of
two vector fields, then it is also invariant under the action of their Lie
bracket. In what follows, we shall adopt the notation a{w;,ws,...)
to denote the Lie algebra with basis {w;,ws,...} and (w;,ws,...) to
denote the corresponding vector space.
We are now ready to state the assumptions:

(i) HT is a manifold.

(i) For z € T, dim(T'(HT)|;) = dim{h(z),TT|,), where TT|, and
T(HT)|, are the tangent spaces, respectively, of I' and HT, at z,
and (h(z),TT|,) is the span of h(z) and TT|,.

(iii) The action of H “splits along I'”, i.e.,
h()(z) = h(z) NTT,, z€T,
where h(T') is the Lie algebra of H(T).

We note that Ovsiannikov himself makes assumption (i); the other
two are new. To see that these assumptions are not always satisfied,

let’s consider the following examples:

1. Let T be the z-axis in R%*(z,y), w = 8; + 2z8,, and h = a{w).
Near (0,0), (i) HT is not a manifold, (ii) dim(h(z),TT|;) is not
locally constant and (iii) h(T) is the zero algebra, so that h(I")(0,0)
is the zero vector space, but h(0,0) N TT|p) = {((1,0)), so the
action of H does not split along T'.

2. Let I' be the z-axis in R%(z, y) and h = a{w, w2}, where w; = &,
wo = By.
All three assumptions are satisfied.
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3. Let I' be the z-axis in R?(z,y) and h = a{w;, w2), where w; = d,
and wy = 9; + 220,. Assumptions (i) and (ii) are satisfied, but
not (iii). For h(T') is the zero algebra, so that

h(0,0) N TT}(,0) = {(1,0)) # h(L)(0,0).
2. The Reduction Problem

In what follows, given z € I', we mean by proj the projection onto
the orthogonal complement of TT|, in TM|,. We now need a result of
Ovsiannikov (see Proposition 2.2 below), which we shall state with a
new proof. Our proof has the advantage of suggesting a solution to the
reduction problem. We start with

Lemma 2.1. Let wy,ws,...w, be elements off_: s.t. Vz € T,
{w1(2),...,w,(2)} is a basis for h(z). Let Q = ({w;(F")}). Then rank
Q(z) = dim proj h(z).

Proof. Let A1, A2,--.,Ar € R be arbitrary, and let w = Ajw; +---+
Arw,. Then, at 2

M (w1 F')(2) - (wrF')(2) Al
oeian| : | = ( ........................ ) ;
X (w1 F9)(2) - - (wr F9)(2) X
(w- VF')(2)
(w- VF9)(z)
A1
so that Q({w;(2)}) | : | =0 if w(2) is orthogonal to VF'(z), i=
Ar

1,...,q, i.e., w(z) € TT),, since F is of full rank.
Hence dimker Q(z) = dim ker proj[h(z). But

A
dim |V ner| =dimh(z)=r
Ar
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by hypothesis.
Hence, by the rank-nullity theorem,

dimrange (Q(z)) = dimrange projlh(z)
= dimproj h(z). (1)
Proposition 2.2 (Ovsiannikov) d = rank Q(z).
Proof. From the definition of defect, we have
§ = dimHT —dimT

= dimT(HT)|, — dimTT,
dim(h(z)) + dimTT|, — dim(h(z) N TT|,) — dimTT,
dim(h(z)) — dim(h(z) N TT,)

= dimproj h(z)

= rank Q(2).
Corollary 2.3. § =dimh(z) — dimh(T')(2).

This follows directly from assumption (iii) and the proof of Prop.
2.2

We recall (Olver [8], Ovsiannikov [12]) that by the existence and
uniqueness theorem, a vector field v leaves a submanifold I" invariant if
v(z) € TT|, for all z € I". So given H and T it is straightforward to
find H(T'). Suppose that {w,} is a basis for the possibly infinite dimen-
sional Lie algebra h. Then w = Z;?:l AajWa; € h(T) <= w(F') =
E_?:l/\ajwaj(F*) =0 along.I‘, i=1...,4 <> (Aagyer-1a,) 82
constant vector in ker(wq; (F*))(z) for all z € I.

Proposition 2.4. p(T', H) = p(T', H(T)).

Proof. We have, by definition

p(I,H) = dim(HT)-dimHz (z€T)

dimT(HT)|, —dim Hz
dimT'(HT)|; — dim h(z)
= dimTT|; + é§ — dimh(z)
dimTT|, — dimh(T)(z) + 6 — (dim h(z) — dimh(T')(2))
= dimTT|, — dimh(T")(2) :
= p(T',H(T))

BT
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by semiregularity.
We next state a result of Ovsiannikov’s with a new, and simpler,

proof.

Lemma 2.5. Let H' C H be a Lie subgroup. Then (i) §' < § and
(i) o' > p.
Proof.
(i) &' = dimproj h'(z) < dimproj h(z) =&

and

(ii) pff = dimTT|, — dimh'()(2)
> dimTT|, — dimh(T)(z)
= p.

The solution to Ovsiannikov’s reduction problem follows easily now.

Corollary 2.6. H' C H reduces (T', H) in the sense of Ovsiannikov
iff (i) 8' = dimproj h'(z) < dimproj h(z) = §, and (ii) h'(T)(z) =
h(T)(z).

We observe that since
R'(T)(z) C h(T)(2), dimh'(T)(z) = dimh(I)(z)
iff K'(T)(2) = h(T)(2).

For completeness, we include a reformulation of the Ovsiannikov
(rank-invariant) reduction problem. In an immediate sense, this will
only modestly extend the results so far, but will also correspond to an
analogous problem raised in Sastri et al [16, 18]. The basic observa-
tion is that the defect § and the rank p are numerical quantities. In
Ovsiannikov’s work, minimizing § and p corresponds to minimizing the
complexity of the algorithm and maximizing the invariance of possible
solutions. Strictly speaking then, it is not necessary to restrict ourselves
to subgroups of a given H. The objective can simply be to minimize §
and p. So, as in Sastri et al [16, 18], we extend the context to the full
Lie symmetry group G. The extended problem is then to determine the
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existence of a rank-invariant reduction in G, that is, to find H' C G (H'
not necessarily a subgroup of H) such that &' < § and p' = p. Again,
assuming that actions split along I' we obtain the following:

Corollary 2.7. H' C G gives a rank-invariant reduction of (I', H)
if:

(i) dim proj h'(z) < dim proj h(z) and
(ii) dim k'(T)(2) = dim h(T)(2).

We observe that it is possible to have a chain of reductions H®*) C
-.-H® ¢ HW) ¢ H, but the best possible reduction is obtained by
choosing H' = H(T'). Then, since I' is invariant under H(T), §' =
and, by Prop. 2.4, p' = p. In other words, if h(I') # {0}, then there
is a rank-invariant reduction. The converse is not true in general. (See

Examples 3 and 4 below.)

2. Examples

We remark that all three of our assumptions are satisfied by the
examples considered by Ovsiannikov.

1. This example is due to Ovsiannikov ([12], p.286 and p.293), al-
though the analysis given here is different from his.

Consider the equations of transonic flow:
Uy = Vg, Uy = —Ulg, z,y € R.

This is a nonlinear system whose full Lie symmetry group is infinite
dimensional and acts on M = R*(z,y,u,v). Let H be the two-
dimensional subgroup of this group with generators w; = zd; +
y8, and wy = 8y. If z = (z,y,u,v) and A = ‘f, then F(z) =
(Fi(2), Fa(2)) = (u— f(X),0— g(A) + ¢ In y), where f and g are
some functions and c is a constant. I' is defined as the zero-set of F,
i.e., it is given by u = f()),v =g()) —cln y. So dimT' = 2. Now

we have Q(z) = ( 2 2 ), so that § = rank @(z) = 1. The kernel

A
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Qg
Choosing o = 1, we find that h(I") is the algebra generated by
w = 18, +y8y—cd, and so p = dimI'~dim h(T") = 1. Ovsiannikov
chooses h' to be the algebra generated by z8; + ydy — cdy, i.e.,
s.t. h' = h(T'). The conditions of Corollary 2.6 are satisfied, and
rank-invariant reduction takes place.

of Q(z) consists of vectors of the form ( where a; = —ca;.

. This example is also due to Ovsiannikov ([12], p.279), although,

again, the analysis given here is different from his. The am-
bient space is M = Ri(z,y,z,v); if z = (z,9,2,v), F(z) =
(Fi(2), Fa(2)) = (y — Azz,v), and T is defined as the zero-set of
F. Thus I is given by y — Azz = 0, v = 0. Clearly, dimT" = 2. Let
h be the algebra generated by w; = 28, and wy = 8. It is easy
to see that dim(HT) = 3 and dim(Hz) = 2, so that p = 1. We
have Q(z) = ( g _33: ), so that if z # 0, rank Q(z) =1 =4,
the defect.

The kernel of Q(z) consists of all vectors ( gl ) of the form

2
a] = Aag, e, ag ( }1\ ), as #0.

Setting a; = 1, we find that w(z) = (Azd, + 8;)(z) is in TT|z,
i.e., w is the generator of h(I'"). Ovsiannikov chooses k' to be the
algebra generated by Azdy+8,, i.e., s.t. h' = h(T). The conditions
of Corollary (2.6) are satisfied, since
& = dim proj h'(z) =dimproj h(T')(z) =0<dé=1
and  K/(T)(2) = h(D)(2),

and hence rank-invariant reduction occurs.

. Suppose that I is the z-axis in R3(z, y, 2) and let e2 = (0,1,0),e3 =

(0,0,1) and let h = a(ep, e3). Then §(T', H) =2 and p(I', H) = 1.
Let w be any non-zero vector field in h and let A’ = a{w). Then
§(T", H') = 1 while the rank remains p(I', H') = p(T', H) = 1. Note
that A(T") = R'(T) = {0}.

In our next example, we show that the basic situation given in
Example 3 occurs in the system of partial differential equations
governing transonic flow.
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4. As in Example 1, with w = 28, + yd, — cd,, h' = a{w) gives
a rank-invariant reduction. But Ovsiannikov’s algorithm can be
used again, this time to obtain solutions partially invariant with
respect to h' = a{w). Let z = (z,y,u,v). For arbitrary ¢, an ex-
tended set of solutions (Sastri [17]) partially invariant with respect
to H' includes functions which satisfy

Uy = :F(—‘U)%'u,;
v = k(\u)—cliny, )\mg, y #0,

where k satisfies a derived equation. In particular, we may suppose
ky = 0. Now with A = a{w;,w;) and I" one of these further

solutions, we obtain

Q) = [ (et} O ] |

As in Sastri [17], there exist solutions for which zu; + yuy # 0,
so that rankQ(z) = é = 2. And because h(I') = {0}, we also
get p = 2. Hence, much as in Example 3 above, if v is any non-
zero vector field in h, let B"” = a(v). Then h"(T') = h(T') = {0},
§" =1< 4§ =2and p”" = p = 2. Therefore, there exist partially
invariant solutions with respect to H' which are rank-invariant
reducible with respect to H, but which are not invariant with

respect to any subgroup of H.

5. If § > 1 and z € T, then there exists w € h such that proj w(z) #
0. So the dimension of the linear space dim{w,z),h(T')(2)) =
dim h(T)(2) + 1 < dim h(T") + 4. In general however, this may not
yield a reduction. For since w and h(T') may not be in involution,
the real linear dimension of the Lie algebra a{w, h(T'))(z) may also
be larger than dim h(T')(z) + 1.

3. Concluding Remarks

Local to a point z € T, a given group of symmetries may not “split”
along T. In such cases, HT' may fail to be a manifold. We may nev-
ertheless enquire into the orbit structure. One way to do this would

R
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be to investigate general group actions on sets of submanifolds. This is
independent of differential equations as such and becomes a geometric
question that could apply, for example, to confoliations (Eliashberg and
Thurston [2]) and moduli spaces. Other applications could be in “spon-
taneous symmetry breaking (SSB)” in particle physics. An SSB can be
characterized by the orbit (under an “internal” group action) of a func-
tion which minimizes a potential (O’Raifeartaigh [10]). One feature of a
generalized theory for orbits of manifolds could be an appropriately gen-
eralized definition of dimension of a subset of a manifold. For instance,
one could take the supremum, over a neighborhood, of dimension in the
usual sense. In that case we obtain § > rank Q(z), where strict in-
equality may occur. Preliminary results indicate, however, that a more
refined analysis is needed. As is well known, “dimension” can be defined
in many ways, depending on the setting. In the context of orbits HT',
certain topological definitions promise to be of use. But this would take
us beyond the scope of the present paper; we shall pursue these matters

elsewhere.
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