Catalog
Cover.PDF

Pathways to Real Analysis text.pdf
DOCO001
DOCO002
DOCO003

Pathways to Real Analysis,
by Terrance J. Quinn and Sanjay Rai,
posted to terrancequinn.com and available for individual use only,

with permision of Narosa Publishing House, August 5, 2021.



tjcqu
Text Box
Pathways to Real Analysis, 

by Terrance J. Quinn and Sanjay Rai, 

posted to terrancequinn.com and available for individual use only,

with permision of Narosa Publishing House, August 5, 2021.


| Alpha |
| Science

\
|

Terrance J. Quinn e Sanjay Rai

Pathways to Real Analysis provides an introduction to several
key ideas of real analysis, from Archimedes quadrature of the
parabola, to the Calculus of Newton and Leibniz, power series,
Cauchy’s definitions of limit and integral, the inverse function ~
: =3 : : O
theorem, the implicit function theorem, the wave equation,
Fourier’s heat equation and Fourier series. The book provides
pathways of discovery that are mathematically natural. Examples
are strategically selected in order to help the reader obtain the
appropriate insights. Eventually, this initial understanding can be
subsumed under a further context where one would explore and
establish proofs in an axiomatic context. Prior to proving a result,
however, it is helpful to first have discovered a result as a
possibility. The main objective of this bookis to help promote
that initial discovery, especially as relevant to the emergence of
real analysis. %

This is a mathematics book for college students and college
teachers in science, technology, engineering and mathematics
(STEM) and could serve as a supplement to a calculus sequence (
such as differential, integral and multi-variable calculus (Calculus
I, 11and Il1), or as a textbook for an introduction to real analysis.

978-1-842L5-576-4

lBHE‘ESS?EH"

®

-www.alphasci.com

ey
uuinQ

Terrance J. Quinn

: . Alph
Sanjay Rai Sdidnse

ISBN
q"?&




‘Pathways to
Real Analysis

Sanjay Rai

@®

Alpha Science International Ltd.
Oxford, U.K.



Pathways to Real Analysis
160 pgs. |65 ﬁgs

Terrance Quinn

Department of Mathematical Sciences -
Middle Tennessee State University
Murfreesboro, Tennessee, USA.

Sanjay Rai _
Department of Mathematics
Montgomery College
Rockville, Maryland, USA.

Copyright © 2009

ALPHA SCIENCE INTERNATIONAL LTD.
7200 The Quorum, Oxford Business Park North
Garsington Road, Oxford OX4 2JZ, UK.

www.alphasci.com

All rights reserved. No part of this publlcatlon may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, w1thout prlor written permission of the publisher.
ISBN 978-1-84265-576-4

Printed in India

Terrance Quinn dedicatés this book to the memory of
his parents George Alphonsus Quinn and Bernice Frances Qumn
and to Joan Donaghey.

Sanjay Rai dedicates this book to his wife Mamta Rai,
his daughter Nandita Rai and to the memory of
his father Shri Sarvadeo Rai.



Preface

This is a mathematics book for college students and college teachers in science,
technology and mathematical sciences (STEM). The book could serve as a
supplement to a calculus sequence such as differential, integral and multi-variable
calculus (Calculus I, IT and IIT), or as a textbook for an introduction to real analysis.
We provide pathways of discovery that are mathematically natural. While we start
the text with basic algebra, we lead the reader up to the inverse function theorem
and the implicit function theorem for multi-variable calculus, and from there to an
introduction to some of the ideas that led to the genesis of modern real analysis.
Our approach is a special case of Discovery Based Learning. We invite the reader
to think about clues and examples, strategically organized in order to help the
reader reach the appropriate insights. This basic understanding is needed for
competence in problem solving, in both pure and applied mathematics. Eventually,
these initial discoveries can be subsumed into a further context where one would
explore and establish proofs in an axiomatic context. Before proving a result,
however, it is helpful to first have some grasp of the result as a possibility. The
main objective of this book is to help promote this initial discovery, especially as
relevant to the emergence of real analysis. The pace of the book is leisurely, for we
have found that taking one’s time is important in the learning process.

In Chapter 1 the student is led toward a basic understanding of invertible real-
valued functions. Using a calculus-based approach, this is generalized to the inverse
function theorem for higher dimensions. The multi-variable implicit function theorem
also follows. A prerequisite for Chapter 1 is some basic calculus, such as taught in
many first year college programs, or numerous high schools. Chapter 2 reviews a
range of calculus results and concludes with an introduction to power series.
Chapter 3 develops both the wave equation and the heat equation and ends with an
introduction to Fourier series. Chapter 4, the Epilogue, includes a discussion that
helps point to the rise of complex analysis.

Terrance Quinn
Sanjay Rai
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Discovering the Inverse
Function Theorem

# .

Topics: The main topic of the chapter is the Inverse Function Theorem. The
culmination of the chapter invites the student to draw accumulating basic insights
into a higher viewpoint known as the inverse function theorem of multi-variable
calculus. The college algebra horizontal line test can then be seen to be a consequence
of an intrinsic and more reaching geometry test that applies not only to graphs of
real valued functions, but to general higher dimensional mappings. The Implicit
Function Theorem emerges as a natural follow up result. Prerequisites for this
chapter are college algebra; some trigonometry; and some familiarity with partial
derivatives of real valued functions of two-variables.

1.1 ALGEBRAIC APPROACH

Example 1.1. See Figure (1.1) One mercury tube; two rulets, one scaled in °F and
one scaled in °C. The temperatures of interest are from freezing to boiling, for
water (at sea level say). By construction, both rulers start at 0°. Note that for °F,
freezing to boiling is 32 to 212. For °C, freezing to boiling is 0:to 100.

Converting temperature °C to °F: Whatever the mercury. level, one can look
to either ruler to get the temperature in °F or in °C. Given °F, look to mercury, and
then look to °C ruler; and vice versa. In other words for each °F there is a °C; and
for each °C there is a °F. o

Question 1.1. (Converting °C to °F). What is F for 1 °C? What does 1 °C
mean on the scale? Note that 0 °C is freezing; 100 °C is boiling. So 1 °C is 1/100
of the way from freezing to boiling. Now look at the °F ruler. In Fahrenheit, 32 °F
is freezing; 212 °F is boiling. There are 180 °F between freezing and boiling. But
°F and °C refer to same mercury tube! So 1/100 of the way to boiling along °F
ruler is 1/100 of 180. What then is °F corresponding to 1°C? Be a little bit careful
here. No doubt you have the right start to the idea. But, what is the °F temperature
at freezing? So, we need to add 32 °F. That is, in °F, 1 °C corresponds to [1/100
of (180)] + 32 on the °F scale.
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212° F Water Boils
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0°F E

Mercury in tube
Figure 1.1
Notation. When we are discussing several conversions, it becomes cumbersome
to be constantly writing the degree symbol “°”. So, from now on, if we are looking

for a quantity in a conversion problem, we can simplify the notation and just write
F for Fahrenheit and C for Celsius.

Exercise 1.1. What is F when C = 7?; when C = 7.5?
Exercise 1.2, If C = 5, what is F?

Question 1.2. What is F for any C? That is, how do we convert any C to the
corresponding F on the mercury tube?

Solution. Starting from 0 °C, note that C is a percentage of the way to boiling,
namely C/100 of the way to boiling. On the °F ruler, there are 180 °F from freezing
to boiling. So from where the mercury is at freezing to the mercury level at C,
there are C/100[(180)] °F. But freezing starts at 32 F. Therefore the actual °F
value on the °F ruler is F = C/100 (180) + 32. Thatis F = 1.8 C +32.

Converting Temperature °F to °C
Exercise 1.3. Using formula: If F = 100, find C. If F = 212, find C. (Use formula.)

Exercise 1.4, Given any F, what is C? That is, how do we convert any F to the
corresponding C across the mercury tube?

Discovering the Inverse Function Theorem 3
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Figure 1.2

Converting Temperatures Below Zero

We have two rulers for the same mercury tube; and we have a formula that converts
F to C; and vice versa, at least for temperatures from freezing to boiling. What
though if the mercury drops below the freezing mark. Then it also drops below the
bottom of the C ruler! How can we manage that situation?

A solution:

Turn the °C ruler around to measure the drop in mercury using the same scale.
Numerically, we can track this by continuing the °C scale by naming downward
distances using negative numbers.

Question 1.3. 20 °F is below freezing and so will be a negative C. Which one?

The formula we developed really only depended on what? A change of 1 °Cis 1/
100 of a change of 180 in °F; and then just keep track of the reference that 32 °F
is freezing. In other words, the same approach can be used for temperatures
below freezing.
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Let’s look at what we have. If F = 20, then 20 = 1.8C + 32. Solving for C we
get C=—6.66. The formula F'=1.8C + 32 produces F, if we know C. The formula
= 1/1.8(F — 32) produces C, if we know F. S

Question 1.4. Without doing any calculations, what should we get if we first
convert one way, and then convert back? If we convert from °C to °F and then
back again, what should be the result? If we convert from °F to °C and then back
again, what should be the result?

Exercise 1.5. Now do the algebraic calculations to see whether or not the
formulas produce the answer that you just gave. That is, does C(#(C)) = C?; and
does F(C(F)) = F?

Exercise 1.6. Again, what does this mean on the mercury tube?

Remark 1.1. We have two formulas: Given C, we can convert Cto Fby F=
1.8C + 32.

Given F, we can convert F to Cby C=1/1.8(F — 32); How can we name how
these formulas are related to each other?

We have been talking about “converting” from one temperature scale to another.

You might know that the word “convert” comes from the Latin word verto,
which translates to “turn”, or “turn around”. The first formula F = 1.8C + 32
“turns the C around to 7. And vice-versa for the other formula. So, to name how
the two formulas relate to each other, we could say that each is “the turn around”
of the other. Why? Because they convert, or “turn around” the degree readings
from one temperature scale to the other. This even goes with what we need to do
when we look at the two readings for the one mercury tube. We need to turn our
attention, from one side of the tube to the other; and vice versa. Using the Latin
again, but now for the noun rather than the action, each formula is “the turn
around,” the “in-verto” of the other, or in modern usage, the inverse of the other.

Exercise 1.7. In a physics lab experimeht, starting at 0°F/-17.77°C, the
temperature is slowly lowered to -100°F/-73.33°C. During the experiment, both
scales descend below zero. ' '

At the beginning of the experiment, the Celsius temperature is already well into
the negatives, while the Fahrenheit temperature begins its descent at 0°F. Recall,
though, that as the temperatures drop, the Fahrenheit readings change more rapidly
than the Celsius readings, in a ratio of (1.8) : 1. So, even though the Celsius has a
head start into the negatives, as both readings descend below zero, might there be
a temperature where the reading on the Fahrenheit scale catches up (or rather

“catches down”) with the Celsius reading?

One way to answer this is to make use of our conversion formula F=18C+32.

A temperature where both readings are the same would mean that we have an F/
and a C, with F= C and F = 1.8F + 32 (or C= 1.8C + 32). Solving this equation,
we get F=C=-40.
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It is worthwhile to pause for a moment to think about what this means. Of
course, degrees Fahrenheit and degrees Celsius are like apples and oranges. So, it
doesn’t make sense to say that — 40 of one is equal, as such, to — 40 of the other.
And, not to worry, calculation does not say that. What then does our result mean?

Recall the meaning of the terms in the formula. They represent readings along
two scales that were set up along a mercury tube. So, our solution /= C=-40
equates neither apples and oranges nor degrees Fahrenheit and degrees Ce1s1us,
but indicates that once the mercury has reached a certain point well below freezmg,
the readings on the two scales happen to be the same. Note also that our conversion
formula also tells us how often this can occur. That is, it can happen only once, at
F=C=-40. ‘

Now, converting numbers from one measuring scale to another occurs in many
settings besides temperature scales. So, let’s look at another example.

Example 1.2 Imaglne a parabohc mlrror set up ina laboratory See Figure 1.3.

A
Light Y Light

Figure 1.3

(One of the properties of a parabolic mirror is that it focuses incoming‘ light)

Converting Distance to Height: The diagram gives a cross-section of the
mirror. It has been constructed so that its height ‘¥ is given by the distance x from
the vertex by y = = %2, (By the way, why is the name “vertex” used for the lowest
point on the parabola? Clue: That Latin word again!)

What is a convenient way to identify and dlstmgulsh points to the right of the
vertex from points to the left? For example, x =2 “to the right” vs. x =— 2 “to the

left”?
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R x>0
Vertex: - x=0
L x<0

What is the height at x = 2? Whenx =2,y = (2)> =4.

What is the height x =—2? When x =2,y = (- 2> = 4.

Converting Height to Distance: For the height y = 4, what is the horizontal
distance from the vertex? Look at the diagram. Is there something misleading

about the question? At height y = 4 there are two points on the mirror, and so two
distances, x = 2 and x = — 2. Let’s see how the formula reveals this.

y=x
4=x
so, x=x2

In other words, unlike converting from one temperature scale to another, if we
try to convert from height to distance from the vertex, then because the shape of
the mirror is parabolic, there will be two possible vertex distances for any given
height. From the vertex, one horizontal distance will be to the right and one to the
left. Numerically, the square of a positive x > 0 is the same as the square of the
negative x < 0. That is, (x 2= (—x)

Question 1.5. Is there an exceptional case? Is there a height for which there is
only one horizontal distance to the vertex? Now, having more than one possible
answer to a question is not necessarily a bad thing. In the case of the mirror, it
simply reflects that the mirror has two completely similar sides. The algebra also
reveals this: For a given non-negative height y > 0, if

y =2, then

x=i\/_)7.

It is often useful, however, to remove the ambiguity/choice. We can do this by
isolating the vertex (middle of the mirror) and looking to one side of the parabola at
a time.

RHS: y=x*x>0
Vertex/Middle: y=0,x=0
LHS: y=x%,x<0

Then to convert height to distance, we keep track of which side we are looking

at;
x= -y

RHS:Convert by x = +\/—; .
Let’s focus on the RHS for now. We convert distance to height by y = x*; and

LHS: Convert by

we convert height to distance by x = +\/_y_ .
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Question 1.6. Converting twice, first distance to height, and then height to
distance gives what result?

Similarly, converting height to distance and then distance to height gives?
Exercise 1.8. Use the formulas to obtain the answer to the following question:

Question 1.7. Since the two formulas convert back and forth, what would be
a good name for how the formulas relate to each other? (Answer: Again, the
formulas are called inverse to each other.)

Exercise 1.9. Repeat the above exercise and questions for y = (x — 3)%.

Exercise 1.10. ;
(i) Suppose that x converts to y by y =x* — 2x + 1.

Find hpw to convert y to x, that is, find the inverse formula or formulas.
(ii) Suppose that x converts to y by y = 10x — 70.

Find how to convert y to x, that is, find the inverse formula, or formulas.

1.2 GRAPHICAL APPROACH (GEOMETRY)

Let’s look again at the example of the parabolic mirror. Suppose that we have a
cross-section of the mirror, we have rulers, but we do not have a formula. Can we
still in some practical way at least, convert distances to heights or heights to
distances?

Ruler

Figure 1.4

Suppose that at distance x = 2, the height of the mirror is 4. Then x = 2 converts
to y = 4. Notice that this argument goes the other way, it can be turned around.
Recalling more traditional Latin wording, we can say “conversely”: The height
y =4 converts to x = 2 (at least on the RHS of the mirror!)
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By the way, notice that the root of the word “conversely” is the same as for the
word “inverse”. In other words, if an argument is “turned around”, then we can
use the Latin name and say, “with - turning around”, that is, “con — verto”, or in
modem english usage, conversely.

Example 1.3. Suppose that dlstances x and helghts y are represented in the
graph below

Ay

RYy.

Figure 1.5

Using the rulers mdlcated in the dlagrams approximate answers to the followmg
questions:

x=1 converts to  ? )
x =2 converts to  ? (2)
x =3 converts to  ? (2.75)
y =2 converts to what?

There are two x’s that convert to the same height y = 2. So again we are
in a situation where if we try to convert, we get ambiguity. In that sense, it is
said that there is no inverse, at least in the sense of providing one answer on the
return.

Question 1.8. Consider the diagrams. Try to find a geometric feature or geometric
property of the graph that reveals whether or not we can convert back and forth
between x’s and y’s (that is without ambiguity, without multiple answers). There is
ambiguity when there are two points at the same height relative to the x-axis. But,
a clue: In geometry, two distinct points determine what? (Answer: A straight line.)
A straight line that is parallel to the x-axis is also called horizontal.

Example 1.4, Using lines only, determine which (if any) of the following graphs
could come from formulas that have inverses.

Discovering the Inverse Function Theorem 9

Ay Ay

RY
=Y

) ‘ (i)

L wy
7

l .
(iii) () -
Figure 1.6

Can you put your idea into words? We come to what is often called the “horizontal
line test”: A graph has an inverse, or is “invertible”, exactly when no horizontal line
meets the graph in more than one place. Or, we can say it this way: A graph fails to
have an inverse exactly when there is at least one horizontal line that meets the
graph in more than one place. Notice that the horizontal line test is a graphical test
for invertibility, but does not give the inverse formula itself.

/

Ay

Inverse does exist:
All horizontal lines meet the
graph at most once.

\
i 4



10 Pathways to Real Analysis

Ay

Inverse does not exist:
A horizontal line meets
the graph in more than
one location

At
Ve
H\(

Figure 1.7

1.3 IMPLICIT FORMULAS

Exercise 1.11. Recall that we can write the equation of a line in a way that expresses
in an equitable way both that x is related to y, and that y is related to x. For
example, there is the line in the x — y plane given by 5x + 7y = 12. Graph this line.
Find the formula that converts x to y. Find the formula that converts y to x.

Example 1.5. Recall that because of the Pythagorean formula, the equation of
the circle of radius 1 centered at (0, 0) in the x — y plane is L+ =1

Ay

Ry

Figure 1.8

(a) Using the graphical approach (the horizontal line test) determine parts of the
graph that have inverses.

(b) Using the algebraic approach, find invertible formulas and cases converting
xtoy.

Discovering the Inverse Function Theorem 11

(c) Compare and connect your answers from (a) with your answers from (b).

2 2

Exercise 1.12. Graph the ellipse given by %+y7=1. Answer the same

questions (a), (b) and (c) as in the last example.

1.4 MORE VARIABLES

1.4.1 Rectilinear Plane Coordinates
Imagine a farm property bordered by two rivers, as in Figure (1.9).

Riverv

Riveru

West East

South

Figure 1.9

For the purposes of plowing and seeding, the farmer has for many years found
it convenient to use the rivers as reference lines, for marking off the land. Each
line is set apart by the distance needed for the tractor to make one pass. So, in
order to account for all locations in the field, the farmer has recorded the locations
in the field by a spread-sheet of pairs of numbers (u, v), or river coordinates. The
first number u represents the distance from the river v in the direction paraliel to
river u; and the second number v represents the distance from the river « in the
direction parallel to the river v. In the diagram, the location P, for example, is given
by (u =2, v=3).

Suppose that the state agency has required a determination of properties relative
to standard geographic (x, y) north-south/east-west coordinates. The question then
is how to convert the (u, v) spread sheet coordinates to geographic (x, y)
coordinates.
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Example 1.6.

y A v

py)

R)
bg! Y1
[

1 X2

bl 4

Figure 1.10

The location P is (u, v) = (2, 3). We need to see what x (east-west) and y
(north-south) coordinates are needed for that same location P. Let’s do one
geographic coordinate at a time, and so we can start with x.

y A
P
y=3
V2
/o
u=2
Y1
0(w) N
X X, - X
Figure 1.11

Both sets of coordinates emanate from a common vertex, or origin O - the place
where the rivers meet at the corner of the property. To reach P from O, move first
in the direction of the u coordinate (parallel to the river ©); and then from Q to Pin

Discovering the Inverse Function Theorem 13

the direction of the v coordinate (parallel to the river v). The OQ segment and the
OP segment each contributes to a change in the x-coordinate, x; and x, respectively.
So we get that the total change in the x — coordinate is the sum x; + x,.

Let’s focus on just this special case for now. Let 6(u) be the angle between the
u river and the x axis; and let 8(v) be the angle between the v river and the x axis.
Looking to Figure 11, it is evident that x; depends on 6(x) and x, depends on 6(v).
There are then the following questions:
5 =500 =7 andxm s, 52247,
%) = x(6)) = 2
And since similar reasoning applies'to the y coordinate, we also have the questions
1 =y(0@w) =? andy.=y1 +y, =7+
C n=y(00) =? _
For the x coordmates the deﬁnltlon of the cosine function gives
=2 cos (68(u))
x2 =,3 cos (6(v)
and so :
x=x; +x; =2 cos (B(u)) + 3 cos (6(v))
- Exercise 1. 13 y ¥ +y, =2 sin (8(x)) + 3 sin ()

- Exercise 1.14. For any (&, v) on the farm property, we can convert to geographlc
coordinates by the formulas

X =1u cos (G(u)) + v cos (6(v))
y=u cos (&(u)) + v cos (&)

Remark 1.2. For an important special case, think of what this means if the
rivers happen to be perpendicular to each other

A

9()=0G)+7

8)

Hy

Figure 1.12
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Then the angles are givenby @(v)=0(u)+ % . In other words, for this situation,

the (u, v) coordinate system is obtained from the (x, y) coordinate system by
simultaneously rotating both axes by the same angle 6(u).

Exercise 1.15. In the case e(v)z 6(u) +% , and the formulas become

x = u cos (B(u)) — v sin (6(u))
y = u cos (B(u)) — v sin (6(u))

Hint: cos (0+ %) =9?andsin (e+ %) =9

This exercise gives the classical formulas for converting coordinates from one
set of axes (u, v) to a set of axes (x, y) rotated clockwise by 6(u).

Exercise 1.16. Use the rotation formulas, together with similar geometric figures,

to get the formulas
cos (a + b) = cos (a) cos (b) — sin (a) sin (b)
sin (@ + b) = sin (a) cos (b) + cos (a) sin (b)

Hint: Rotate perpendicular coordinate axes first by angle a and then by angle b.
Use a similar break down as above, into geometric parts. There will be various
right angle triangles stacked into the diagram. This is what accounts for there
being sums.

We have solved the problem of converting the farm coordinates into geographic
coordinates for the state. What about going the other way? If a state geographer
gives the farmer geographic north-south/east-west coordinates (x, ), how can
the farmer figure out the river coordinates for the corresponding locations on the
farm? In other words, how can the farmer convert from geographic (x, y)
coordinates to (u, v) coordinates? This leads to the next sub-section.

1.4.2 Algebraic Approach

We have two equations relating (x, y) and (u, v):
x =u cos (B(u)) + v cos (6(v)
y=1u cos (6(u)) + v cos (8(v))
Here 6(x) and 6(v) are constants given by the angles that each of the rivers
makes relative to the east-west axis. Can we solve these equations for # and v?

Can this pair of equations be turned around, that is, inverted? In other words, can
we find formulas for # and v given in terms of x and y, formulas of the form

u=u(x,y)‘7
v=v(x,y) .

Discovering the inverse Function Theorem 15

Exercise 1.17. Using elimination, show that

u [cos (0(v)) sin (e(u)) —cos (B(u)) sin (ﬁ(v))] = ycos (0(v)) —x sin (ﬁ(v))
v [cos (0(u)) sin (9(v)) —cos (9(v)) sin (G(u))] = ycos (Q(u)) — X sin (G(u))

Now, recall that sin(a +b) = sin(a)cos (b)+cos(a)sin(b)

So these equations can be rewritten as
| u[sin(6(5) - 6(v))] = y cos(6(+)) - xsin (6(+)
v[sin(6(-)- 6(u))] = » cos(6(w))~xsin (6(u))
This can be solved for u and v if and only if sin(6(u) - 6(v))#0, that is, if and
only if 8(u)— 6(v)# kr, for any integer k.

1.4.3 Geometric Approach

What does the condition &(u) ~ 6(v) # kz mean about the rivers? In particular,
what would it mean about the rivers if 8(u) = 6(v) ? Or 8(u) = 6(v) + 7 ?

Let’s look at what_ I}api)ens to the u — v spread-sheet pairs (u, v) as we consider
different cases. - -

v A

o B '

=Y

o

Figure 1.13

o) = 0(u)+—§-
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YA

v A

c
A \\
[0, B i o
Figure 1.14
/4
oWw) = 0(u)+—
®) = 8(u)+
yA
v
v A
A,‘ -
BI
c
A ~~\
o B ) x
Figure 1.15

In each case the unit square OACB in the u-v spread sheet converts to a
parallelogram O’A’C’B’. In Figures (1.13)-(1.15), what is happening to the
parallelogram O’A’C'B’ in the x-y plane, as 6(v) gets close to 8(u)? The pairs (¢, v)
from the arc (AB) convert to the pairs of (x, y) on the arc (AB’). As 6(v) gets
close to 6(u) what happens to the length of the arc (A'B")? If 6(u) reaches 8(v),
then all of the many pairs (, v) along the arc (4B) convert down to the single
location A’ = B’. So, in this case, if we were to try to invert from (x, y) to (u, v),
we would run into a problem, at least mathematically. For given (x, y) = A’=B’, there
are then many (u, v) spread-sheet pairs which convert to (x, ¥) = A’ = B". Now, arc

length can be difficult to calculate. Instead of arc length, what other geometric quantity

could detect the approach to “collapse” that occurs as 6(u) approaches 6(v) ?
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Clue: Look to the grid lines.
Answer: The area of the parallelogram.

As can be seen in the diagrams, as long as the area of the new parallelogram is
greater than zero, then the (x, y) locations in the parallelogram O’A’C’B’ uniquely
convert back to (u, v) pairs in the square OACB. We loose uniqueness exactly
when the parallelogram O’A’C’'B’ collapses to a line segment O’C’, with A’=B".

Evidently, what happens to the unit square OACB in the spread-sheet is an
indicator for what happens to the rest of the spread-sheet coordinate squares. In
fact, the conversion of (1, v) to (x, ) can be inverted if and only if the area of the
parallelogram O’A’C’B’ is positive. *

144 Geometric Approach with Coordinates

Perhaps the discussion above has provided enough material for us to go on to a
more general question. Suppose (u, v) coordinates convert to (%, y) coordinates by

‘a (11near) equation of the form

o x=aut bv :
y=cu+dv
Just as for the (u, v) spread-sheet and farm field example, we can represent this
in a diagram.

YA
VA

?

—

B 4

Figure 1.16

What do we draw in the (x, y) plane? How do we convert the u and v coordinate
lines? How do we convert the unit square? The point 4 is given by (=0, v=1).
The point B is given by (u = 1, v = 0). The equation converts B to (a, c) in the
(%, y) coordinates and converts 4 to (b, d) in the (x, y) coordinates. As the reader
may recall (or calculate), since the equation is linear, all multiples of the line OB
therefore convert to line segments parallel to (a, ¢) in the (x, y) coordinates. In the
same way, the line segments along O4 convert to line segments along (b, d).
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YA

Figure 1.17

Exercise 1.18. Calculate the area of the parallelogram O’A’C’B’ determined by
(a, ) and (b, ¢), in terms of the coefficients a, b, c, d.

Outline: Recall that the area of a parallelogram is “base times height”. Then area

of the parallelogram is therefore \/ a*+c? J br+4? sine. To complete the

i
exercise, we need sin «in terms of g, b, ¢, d. But, sina = \/ 1-cos’ and cos &
ab+cd

= . Substituting, we get that the area of the parallelogram is
Ja+32 b +a°

(aai—bc)2 = |ad—bc|.

The quantity ad — bc commonly is known as the “determinant” of the system.

The formula for the cosine comes from investigating triangles that need not be
right angled triangles. One may place a non-right triangle inside a larger right triangle;
and then obtain two right triangles. Applying the Pythagorean formula twice (once
for each right triangle) and expressing the results in terms of coordinates produces
the well-known dot product formula (a,c)e(b,d)= " (a, c)" " (6,d) " cosd.

Exercise 1.19. Recall the algebraic approach for the farm field problem. In the
same way, use elimination to show that the system of equations

x=au-+ by
y=cu+dv
can be solved for u and v if and only if ad — bc # 0. In summary, we have two

equivalent formulations, that is, the geometric and the algebraic. In other words,
the following are equivalent:
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(i) The pair of equations x=au+by can be inverted;
y=cu+dv
(i) The area of parallelogram determined by (a, ¢) and (b, d) is not zero
(Geometric);

(iii) ad — bc # 0 (Algebraic)

1.4.5 Three and More Variables
Suppose that we have a 3-D conversion formula (u, v, w) to (x, y, z) given by three
equations of the form i
x=apu+apv+aw
b) = Gy Ut aypv Tt anw
Z=ayut aypy+agpw
Exercise 1.20. Draw 3-D grid lines and a unit box in the (u, v, w) axes. Draw
the parallelepiped to which this unit box is associated through the equations.
Clues: What are the vertices of the parallelepiped?

As you might have already figured out, the three equations convert the unit box
inthe (u, v, w) coordinates to a parallelepiped with vertices in the (x, y, z) coordinates

Qi | %2 || %3
are given by the edges | a,; |,| @ |-| @ |-
@y |92 [933
The volume of a parallelepiped is (area of base) times (height). Select a base.
Then the height is the length of the edge rising up to the height (hypotenuse) times
the sine of the angle of elevation of that length, relative to the selected base. Hence,
we can use the cross-product and the dot product to calculate the volume in terms

of the coefficients a,;, ay,, ..., as3. It will be helpful for the student to work this
out.

Can you now give both geometric and algebraic formulations for when the
equations can be inverted? What is the common name given to the volume quantity
when it is given in terms of the coefficients a;;, a5, ..., az; ?

91 G2 43
Answer: The determinant, typically written as det| a,; a,, a,; |.
@31 A3 A3z

Remark 1.3. The more advanced reader may recall that there are determinant
formulas for two equations in two variables; three equations in three variables;
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four equations in four variables; five equations in five variables; and so on. The
general determinant formula is a sum of products of matrix coefficients, in certain
combinations, multiplied in an alternating pattern, by + or —.

One way to obtain the general formula is to identify the key properties of “area”
and “volume” from 2-D and 3-D, and to abstract those properties to define an “n-
dimensional volume function”. For example, in both 2-D and 3-D, doubling the

length of one edge of a parallelogram or parallelepiped doubles the area and volume -

respectively; halving the length of afy oné edge results in half of the area and
volume respectively; and so on. Ax_iother key property can be found by recalling
that the area of a rectangle is unchanged when one side is translated along a parallel
direction to produce a parallelogram. For then the base and height remain the
same. This extends naturally to the 3-D case as well. That is, parallel translation of
any side of a box leaves the total volurne unchanged.

Vi

Face representsa 3 — D parallelogram _
generated by ¥y, 3, V4

Figure 1.18

~ Exploring these properties further, it becomes evident that a general
“n-dimeﬁsibnal volume function” should be linear in each component — called
“multilinear”. Note also that through both geometry and applications, the orientation
of edges ofa parallelogram or paralleleplped leads in a natural way to the notion of
sxgned area” and “signed volume” respectively. In order to generalize this property
“n dimensions” requires that the volume function be “alternating”. That is, a
switch of any two edges changes the algebraic sign of the “n-dimensional volume”.
An “n-dimensional volume functlon” will therefore be (i) “multilinear” and
(ii) “alternating”.

To go.into more detail here would take us beyond the scope of this introductory
book. For more details, please consult one of the standard linear algebra texts. If
though we apply these two properties to a 4 X 4 matrix, then we get the formula
for a 4 X 4 determinant; if we apply these properties to a 5 X 5 matrix, then we get
the formula for a 5 X 5 determinant; and so on. In each case, we use properties
(i) and (ii) to successively factor out the coefficients of the matrix, until we are left
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with the traditional formula for the determinant, multiplied by the #-dimensional
volume of the unit cube. If we define the unit cube to have unit 4-volume/5-
volume/n-volume, then we obtain the traditional determinant formula It can be
proven by induction.

Just as in the special cases of a 2 X 2 or 3 X 3 matrix, it is possible to show
algebraically that the determinant provides a criterion for when a system of equations
can be inverted. The geometric formulation requires that the unit 7 box determined

1 0

0 :
. by the edges | . 1,..., 0 does not collapse under conversion. That is, the

4, a,
parallelepiped determined by» edges | : |,...,| : | needs to have non-zero

a a

nl nn

n-dimensional volume. But, as described above, the algebraic formulation of
n-dimensional volume is that the determinant is not zero.

The linear conversion is given explicitly by

X1 = a“ul + ...+ alnun

Xy =auu t...+ta,u,

Observe that this may also be written using function notation. For then the
conversion is given by the function F : (u,, ..., u,) = (x|, ..., x,,) defined by

ayuy + ...+ au,
F (uy, ..., un)= :

The following are then equivalent:

(i) The equations can be inverted; _
(ii) The parallelepiped (F(l ,0), ..., F(O, ..., 1)) has non-zero n-dimensional
volume; :

ay in
(iii) The quantity det({ : [,...,| { |[|#0
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. Now that we have a way to determine whether or not an inverse exists for
linear systems that are 2-D, 3-D, etc., the reader may wonder about the simplest
case of all, the 1-D case. Did we miss this? Our approach at the beginning of these
notes was different for the 1-D case. Does the determinant approach of calculating
area, volume, etc. also work in the case where we have merely one linear equation
of the form x = qu? '

\ .
Example 1.7. Suppose that we have a parabolic lens, and that the photo screen

is situated so that the incident image 7 is contracted by a factor of ¢ = l
2

-
3 i P/ ~~~~~~~~~~~~~~
- I
d — ¢x =12u .. >®
“ -\ T Focal
O -_ o’ point
II
Parabolic Lens Photo Screen

Figure 1.19

Every point P that is a distance » from the base of the image O is converted to

a point P’ that is a distance x = % u from the image of the base (; and vice versa.

In other words, the conversion x = % u can be inverted. Evidently, the formula for

the inverse can be easily calculated to be # = 2x.

1 B?ut, what happens if the photo screen is placed at the focus of the parabolic
ens?

+ Focal point
I'=p’

Q=5
b
I

Parabolic Lens Photo Screen

Figure 1.20
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In this situation, the resulting image collapses to a single point P’ at the focus.
The conversion of lengths is given by x =0 « # = 0 for all lengths along the incident
image 1. Clearly, this formula cannot be inverted, for many lengths along I are
converted to the zero length in I’! -

While the lens was used as a model, perhaps we can now jump to the conclusion
for whenever the conversion is given by x = au.

Conclusion: The following are equivalent:

(i) The formula x = qu can be inverted;
(i) The length u =1 is converted to a non-zero length. (Geometric);
(iii) The coefficient a # 0 (Algebraic; 1-D determinant)

. . . X
Of course, if x = au and a # 0 then the inverse formula is given by u=—.
a

Remark 1.4. The reader may recall that we already had a geometric test for
single equations - the horizontal line test. So we now have two tests for invertibility
of a formula such as x = au. The two tests, though, are rather different. The
horizontal line test is graphical; and it goes “outside” the graph of x = au, by
depending on whether or not horizontal lines intersect the graph in more than one
location. The test just developed, however, is in terms of the intrinsic expansion/
contraction factor a in the formula x = au. This is evidently the special 1-D case of
our area/volume/determinant solutions for 2-D, 3-D and n-D linear systems. For,
if we set u = 1, we get that the unit length in the - coordinate is converted to the

lengthx=a+1=aqa.

1.5 THE CALCULUS APPROACH

Our work so far has been for linear systems. What about other types of formulas?
For example, there is a formula x = #?. How do we calculate the expansion/
contraction of this formula?

Notice the following:

x(10) —x(9) =100-81 =19
x(3)-x(2)=9-4=5

So, the expansion changes, depending on the initial values.

Or, for a 2-D example, using radar technology, the location of an airplane
can be given by a distance » from the tower and an angle 8 from a reference
direction.

The numbers » and 6 can be converted into geographic coordinates by

x =r cos @ (reference direction)
y =r sin @ (perpendicular to reference direction)
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/Reference Directior

Radar Screen

Figure 1.21

For instance, x could be miles east-west, and y could be miles north-south.
The present section is devoted to the problem of determining when an inverse
exists, for these and other formulas, regardless of whether or not the formulas are
linear.

1.5.1 One Equation
Let’s return to the formula for the height of a parabolic lens, y = x%.

A

y

(__>x X

Figure 1.22
We can plot points on a graphical representation. As we discussed earlier, since
(2)*=(=2)*and (x)*= (- x)? for all x, the formula in its entirety cannot be inverted.

We can invert the formula, however, if we take one side of the mirror at a time.
If, for instance, we look to the RHS, then as x increases, y increases, and no
heights are reached twice. So the RHS y =2, x > 0 can be inverted. That is, given

¥, we can solve for x by x= \/; .
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Our understanding of this mirror example so far depends very much on insight
into the diagram for the graph. Is there, instead, a way to calculate, to precisely
obtain that the RHS of the parabola formula really does continue to increase, and
really does not turn back somewhere to reach some height more than once?

This is where calculus can come into play. Recall that near any x,,> 0, the slope
of the graph of y = x%, x > 0 is approximated by the slope of the tangent line of
slope 2x,. Since x,, > 0, the slope at x, is strictly positive. It follows that for x, >0,
the graph is strictly increasing everywhere. In particular, it does not decrease anywhere.
A

y v

Tangent
¥ =25 (x —xp) +x(2)

Inverse of tangent

(r-xd
x=——"+x,
27“'.0
Xy x g

Figure 1.23
Tangent Line: y=2x, (x - xo) +x2
Inverse of tangent line: x = @ + X2

Xo

Basic Theorems from calculus let us conclude that since the tangent line is
invertible, so is the graph of y = x2, x > 0, at least near x = x,,.

Example 1.8. Is the formula y = x° — x> + 25 invertible near x = 1? From
calculus, the slope of the target line at x = 1 is m = 5(1)* — 3(1)* =2 > 0. Therefore,
at least near x = 1, there is an inverse. Note, however, that while we now know
that an inverse exists, finding an inverse formula is another matter. Frequently, an
inverse formula cannot be obtained as an explicit formula in familiar terms. Exploring
when this is possible, or not possible, would take us into areas of abstract algebra
and analysis beyond the scope of this introductory book.

1.5.2 Two and More Equations

Recall that radar coordinates (r, 8) (also called polar coordinates) can be converted
to geographic coordinates (x, y) by

x =r cos O (reference direction)

y = r sin 8 (perpendicular to reference direction).
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rsin 0

Ry

rcos 6

Figure 1.24

For the purposes of this example, suppose that the plane is close enough to the
airport so that the curvature of the earth can be ignored. Now, recall also that in
the earlier example of the two temperature scales Celsius and Fahrenheit, each
referred to the same mercury tube. This is what gave a concrete-like meaning to
~ converting temperature scales. For radar coordinates, we can think in a similar
way. For, the pairs of numbers (r, 8) and (x, y) both refer to one location on the
surface of the earth; and so this is what gives concrete-like meaning in this example.

Suppose a pilot uses a GPS device and reports the plane’s location relative to
the surface of the earth, and gives the data to the airport in geographic coordinates
x (east-west) and y (north-south). The airport then finds it useful to know how far
a plane is from the airport, and in what direction. How can the airport (computer)
convert the geographic coordinates x and y into radar coordinates » and 89 We
already have x = » cos @ and x = r sin 6, the formulas which convert radar
coordinates to geographic coordinates. We seek, therefore, the inverse formulas.

From the Pythagorean formula »= \/ x*+y* 20. We also need the angle 6.

But, one way to express direction is slope, and 2 is the slope of the radius
x

pointing toward the location of the plane. To see what this means in terms of the

. rsin@
angle, we can substitute to get X_rsne _

tan@. So, 6 =arctan (1)
x rcosf

X
What happens though if a plane as approaching from due north? In that case

x = 0 and the inverse formula 6 = arctan (Z) is not defined.

X
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Or, what if = 0 ? Then x = 0 and y = 0, for all angles. In this case, what could it
mean to ask for the (7, ) which converts to (x, y) = (0, 0) ? That is, since more than
one angle @converts to (0, 0), there is no unique inverse as such for (x, y) = (0, 0).

Again, we return to the main question. Is there a test (algebraic, geometric or
otherwise) by which to determine whether or not an inverse exists, regardless of
whether or not an inverse formula can be obtained?

Our conversion formulas are
x =r cos @ (reference direction)
y =r sin @ (perpendicular to reference direction).

Since we had good luck with linear systems by keeping track of how initial
coordinate rectangles convert, consider the following diagram:

B‘A YA

) = ?

6+ °

Y

t ;' r; x
n 2

Figure 1.25

The left side of the rectangle consists of coordinates pairs where » = r; and &
varies from 6= 6, to 8= 6,. The bottom edge of the rectangle is where 6= 6, and
r varies from » = r, to » = r,. This leads to the following more complete diagram:

Cl

A
oA g B

) "

n 5]

Y

Y

Figure 1.26

Certainly, from elementary geometry, one could argue that there is an inverse.
Perhaps you have figured out that this is correct because the rectangle ABCD
converts to a wedge 4, B, C, D, . Horizontal lines from the (7, €) spread-sheet of
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coordinates (6 constant) convert to radii on the (x, ¥) map, and vertical lines from
the (7, 6) spread-sheet of coordinates (» constant) convert to arcs on the (x, y)
map. However, we seek more. We are looking for a test that will work for many

fc')rmulas, not just radar coordinates. So, we need a reason that will work for other
situations as well.

Again calculus can be of assistance. For while the conversion formulas x = 7
cos @and x = r sin @ are certainly not linear, basic theorems of 2-D calculus tell us
that near a particular (r,, 6,), we may approximate the original formulas by linear
formulas. Using Taylor approximations, we get the explicit formulas

_ _ ox o
£= () =x(5.0)+ 22 (1,8,) (1) + 2= (1,0 (0- 5,

9 sas

+ [higher order quantities in terms of (6 - 6, )/, (6-86)(r-1),(r-#Y ]

_ _ oy )
y=y(r, 9)—-y(r1,91)+a—r(n,el)(r—fi)+a%(7”1,91)(9-91)

+ [higher order quantities in terms of (6 - 6, )2, (0-6,)(r-1),(r-7 )2 ]

9 eee

To get the linear approximation to x(r, 8) and y(r, ), valid for  close to ry and
6 close to 6;, we use the first order terms from these two equations. So we get
that

_ ox )
x= x(r, 9)zx(q,91)+a—r(rl,01)(r—ri)+a—;(r1,91)(9—61)

¥= 2 0)=y(n,0)+ 37 (1,0) (= n) + 2 (1,6,) (0 -6,)..

In matrix notation this becomes

x 1> s O
)G B emld

00

Just as for single straight line equations of the form y = mx + b, the initial
values x(ry, 6)), y(r;, 6,) of the equations do not affect the invertibility of the
linear equations. (We leave that as a question for the reader .to explore.) To
determine whether or not the equations are invertible, we can now use our earlier
work and calculate the area of the parallelogram determined by the columns

ox
3 (”1 > 91)
or * |and

ay- ) N
a_r(_’i’e) ”a-;(_‘”pel)
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In other words, we need only calculate the determinant of the linear approximation
to the equations. The 2 X 2 matrix constructed from these column vectors is
traditionally called the “Jacobian” matrix of the original conversion/equations. That
is, the Jacobian matrix is the matrix

ox ox
5(’1"91) %(”1’91)

J= 3 3 that gives the linear/first-order approximation to
~(1.6) 2(:8)

the original conversions/equations/transformation.

Exercise 1.21. For our radar coordinate formulas, do the calculation to obtain
that the determinant of the Jacobian satisfies det J = r,.

From Exercise (1.21), it follows that as long as r; > 0, that is, as long as we
stay away from the center of the radar screen, the inverse exists near the reference
point (r;, ). Again, note that det J = r; is a special area, for it is the area of a
converted unit square from the radar coordinates (7, 6). This unit square is converted
by the linear approximation J acting at the location (ry, 6,).

g A YA

J/ (— 7, sin 6,  cos 6)
(cos 6, sin 6)

O’(ry cos 6, r; sin 6))

L.
-

Y

¥ X

Figure 1.27

We can now summarize our results by what in multi-variable calculus is called
the Inverse Function Theorem:

TreoreM 1.1. Suppose that converts F : (uy, ..., 4,) = (x|, ..., x,), and that all
partial derivatives exist so that J is the defined Jacobian. If at the point (uf yeees YD )
we have det J # 0, then for a region containing the initial reference point
(uf,...,uf,’), the conversion F : (uy, ..., #,) = (), .., X,) has an inverse F~':
(g5 +eer X,) = (4, ..., u,,) defined on a region containing the image of the reference

point F(ulo,...,ug).
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Moreover, the derivative of the inverse is the inverse of the derivative. See
Exercise 1.22.

The Idea (Not a Proof)

If the linear approximation is invertible, then at least near the point in question,
the original formula is invertible. One-way for the linear approximation to be invertible,
is ifunder conversion to (x;, ..., x,,) coordinates, the unit volume in the (ul seer sl )
coordinates does not collapse to zero (geometry). But it is the determinant (algebra)
of the linear approximation that gives the converted unit volume. The result follows.
We note that the full statement of the Inverse Function Theorem includes a formula
for the Jacobian of the inverse function. Please consult a standard multi-variable
reference text for a more detailed formulation.

Exercise 1.22. Show that the Jacobian of the inverse F~! : ©ps oo X)) & (uy,
.. U,) is given by J~L. Clue: If the inverse exists, locally we can write [F~! o F]
(s oo X)) = (s -y X))

2

v
Yy Or, in the notation

Exercise 1.23. Consider the conversion given by
" : y=u"+v

2 2

. L u*—-v
of the inverse function theorem, F(u, v) = ( ) 2] . Near what points (u;, v;) is
u +v

the conversion F invertible? A unit rectangle in the (u, v) coordinates gets converted

to what shape? What is the inverse of a vertical line in (x, y) coordinates? Draw in -

several vertical lines and their inverses. What is the inverse of a horizontal line in
(x, y) coordinates? Draw in several horizontal lines and their inverses. New “curvi-
linear” coordinates for the plane are obtained. Clue: See Fig. 1.28.

X=X
YA

Y=r

Figure 1.28

Exercise 1.24. In each of the next three problems, make a diagram; determine
whether or not the conversion is invertible; use algebra to verify your solution; and
determine what the Inverse Function Theorem has to séy about each example. Be
careful of the logic of the Inverse Function Theorem. That is, the theorem provides
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sufficient conditions. Note in Figure (1.28) that along the u axis, coordinate circles
are tangent to coordinate hyperbolas. Compare this to the example discussed in
Section 1.4.3., the case where the two rivers are parallel.

1. Consider the function that projects (u, v) onto the line that is they axis.
Make a diagram for this situation. The function is defined by F(u, v) = (u, 0).

2. Consider the function defined by F(u, v) = (u?> + 5/%, 0). What about any
function of the form F(u, v) = (f{u, v), 0).

3. Consider the function that projects (u, v) onto the line # = v. Construct a
formula F(u, v) = (x(u, v), y(u, v)) for this function. Your formula should
only involve u’s and v’s. Hint: Rgcall the that the dot product of two vectors

satisfies v+ w=| v ||| w| cos@. Another hint: Matrix.

Next we look to another well known and closely related result called the Implicit
Function Theorem.

In multi-variable calculus texts, one will usually find the Inverse Function
Theorem and the Implicit Function Theorem in the same chapter, or sometimes in
the same section. The Inverse Function Theorem provides sufficient conditions
for the existence of an inverse function in one or more variables. The Implicit
Function Theorem provides sufficient conditions for when one set of variables
depends as a function (perhaps only implicitly) on another set of variables. Although
these two theorems may at first appear to be rather different, they are in fact two
sides of the same coin.

In Section 3 of this chapter, we looked at the equation of a circle of unit radius,
x> + y* = 1. Using the graph of the circle, y can be interpreted as the height of the
circle off the x axis; and one can see from the graph that as long as we keep to
certain quadrants, the height y is a function of horizontal distance x. In fact, for the
equation x* + 3? = 1, we can use elementary algebra to solve for y explicitly in

terms of x. That is, one function is the upper semi-circle given by y=+4/1-x*;

and the other function is the lower semi-circle givenby y=—4/1— x* . Of course,

3
if we require that a solution function go through the point (%, %J , then we

must choose the function y=+ \/ 1—x* . In the same way, if we require that the
. . . (1 -3
solution of choice go through the point > 5 ) then we must choose the

function y=—+4/1-x%.
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Quadrant IT T Quadrant I

X-axis
Quadrant II] Jdrant v

Figure 1.29

Iq many applications, an explicit formula = y(x) may not be necessary or even
possible. It can be important, though, to at least be able to determine whether or
not such a function exists. In this situation, the solution function is said to be
img.rlz'cit. Note that the name finction is meant in the technical sense of there being
a single valued relation y = M(x); and again, note that an affirmative solution does

not require either a unique or an explicit formula, b ;
,» but merely the exist
least one function. y ence of at

Example 1.9. Consider the relation x2 + siny+y*=1.If x =0, then in order
to ﬁnd a value for ' that goes with it to solve the equation, we neec’i to solve (0)2
+siny+3? = 1. In other words, we seek a y corresponding to x = 0 such that sin
y+ »*=1.1fy is near zero, then sin ¥+ y* =0 is near zero. Since the sine function
18 b.ounded, if y is very large and positive then sin y + 3? >>0 is also large and
positive. Note too that sin y + »*is a continuous function of y. So, by the intermediate
value theorem, there is at least one value for y that solves the equation sin y+yr=
1. In other words, given x = 0, we obtain the existence of at least one solution y,

to the equation (O)2 +sin y, + y3 =sin Yo+yi=1.

Fet’s pursue this a little' more, by trying to analyze the general equation and
whlle. doing so, remember that we have the results and techniques of calculus a;
our dl.sposal. If we suppose that x is given, then we need to solve x2 + sin y+y*=1
That is, we need to find ¥ such that sin y + 32 = 1 — x2 Note that the left hand side;

of this equation sin y + »” satisfies sin y + ¥ 2-1+)?2- 1. Hence, if |x|>\2
there can be no solution, for in that case we would have — 1 > 1 - x2. For example

suppose that x2= 3, then the left hand side is sin y+3*2—1but the right hand side
becomes 1 - 32=_8, So, in order for there to be a solution, we will need to put
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some constraints on x. This though need not be too surprising. The reader may
recall that solutions of x? + 3* = 1 also require constraints on both x and y. In the
case of X + siny+ % = 1, to help us avoid too many subtleties, let’s be conservative

and suppose a strict inequality |x|< \/—2— .

The question now becomes, for x satisfying |x|<4/2, does the relation

sin y + y? = 1 — x* have a solution y = y(x) for each x that in fact produces a
function of x? The quantity in question is h(y) = sin y + y*. We need to determine
whether or not we can find y so that sin y + y* = 1 — x%. Now, 4(0) = sin(0) + (0)?
=0, and also 4’(y) = cos y + 2y. Assuming that y represents radians, we obtain
K'() =cos y + 2y > 0 for all y > 0. The function A(y) = sin y + 3? is therefore a
strictly increasing function. And the key now is the familiar Inverse Function
Theorem for one real variable. For, in one variable, if #°(y) # 0, then locally the

function A(y) = sin y + * is invertible. It follows that as long as |x|<./2, the

relation sin y + 32 = (1 — x%) does indeed imply the existence of a (differentiable)
solution y = y(x) > 0.

For a moment, consider a somewhat more elaborate example such as x* + sin y
+y? + sin z + z> = 1. While the approach taken above starts to reveal some of the
usefulness of calculus, the equation x> + sin y + y? + sinz + 22 = 1 involving three
variables suggests that the somewhat ad hoc approach above may not be sufficient
to deal with more complex relations. So, let’s look again at the problem we have
already solved, x* + sin y + 3* = 1. But now, let’s see if we can tease out some
clues that might be useful for a more general approach.

If we assume that x* + sin y + y* determines y = y(x) > 0 as a function of x,
then we may write x* + sin [y(x)] + [¥(x)]* = 1. We may not be able to solve
explicitly for y = y(x), but what we can do easily is obtain information on the rate
of change of y = y(x). For, using the Chain Rule and differentiating with respect to

—2x

x we get 2x + . {cos[y]+2[]}=0, which implies that p R In

other words, if there is a solution y = y(x) that goes through the point (x, ), the
. dy -2x

slope is given by —=——

P & y dx cosy+2y

instance, even if we don’t have a formula for the function y = y(x) itself, if it

exists, its slope at the solution (x, y) = (1, 0) would have to be

dy -2(1) _Z2_ .,

. (See the second graph of Figure 30.) For

dx cos(0)+2(0) 1
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¥'=2x/(cos () +2y)
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Can this ar; i i i
gument be reversed? If there is a starting point solutidn (x°, %), and

if we can solve explicitl L i
plicitly for e as a well-defined function of (x, ), can we infer

/

/
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the existence of an implicitly defined function y=y(x) that works not only for the

starting point (x°, y°), but so that following the slope function % , we produce
nearby solutions (x, y(x)) as well? To make this idea precise we would need to be
able to “integrate the slope field”. That is, we would need to be able to find a
function whose derivative (slope) coincides with the slope of the field given.

In geometric terms, this seems plausible. For, if a slope field in the (x, y) plane
is given, together with some initial point, it is evident from diagrams that, at least
under suitable hypotheses, this will determine a function y = y(x) that fits that slope
field. i

Example 1.10. For now, let’s skip past the subtlety just mentioned regarding
possible integration of slope fields. Instead, in order to get some more clues on the
implicit approach, let’s return to our old example of the circle x* + 3* = 1. If there
is an implicit solution y = p(x) solving x + [y(x)]* = 1, then using the Chain Rule,

% = _—22_x ==*. Again, this determines an explicitly defined slope field in the (x, y)
y oy

plane. Starting at (0, 1), the slopes can be seen to trace out a counter-clockwise
flow along the unit circle, where the slope at the initial point (0, 1) is given by

% = —-19 = 0. Of course, that makes sense, since the point (0, 1) is at the top of the
circle. Again, finishing the solution becomes a question of integrating the slope field.
y'=—xly
2 A AHN o xixy >y i > S i M R
1.5 4 Ao W oo A e e e o o b B BN NN
AAA A Ao x doo> i > i N R WX
A A XA A Aix x> m Wi N L
Y AP A A i : :
EERE: z
0.5 1o oecferefonei oo R,
44 44 A : :
DO SO O O T IO 5 !
PETV VYV ITY g PR S N N W
BEREREERRES I W
= 0.5 7% XY NN N N e e b ofl e o e
VAN YN NN i xix g A A
NN N NN NN 2>y xryaia g g4
NN N XN WNAN RNl rrixyr 1A
— 15 e N S R R e 2 A A
A N R I S 1 o I O O 4
2 \\\:A\\\\$—>—>§->->—r—r)rllz:fﬂl
-2 -1.5 -1 -0.5 0 0.5 1 L5 2

X

Figure 1.31
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Example 1.11. The two examples we have just looked at are of the form fx, )
= K, where K is constant. Following the implicit approach, if we suppose the

existence of an implicitly determined function y = Y(x) that solves f{x, y) = K, then

we may write f{x, y(x)) = K. As above, we can then differentiate with respect to x

f Fdy_ .o dy_ ffox
Bx+ay dx—O.Thls gives o YN

and obtain

. As long as the denominator

gl # 0, we can solve for % and so obtain a slope field in the (x, y) plane. If this
o

can be integrated, then we obtain the existence of the implicitly determined solution
function y = y(x).

Example 1.12. In the notation of Example 1.11, let’s suppose that f{x, y) = g(3)

= sin y, x arbitrary. Then gl # 0 while 3l =0. It follows that if y(x) is a solution
)y x
of fix, y) =sin y = 1, then % =- g}{% =0. Of course, this implies that y(x) = -

constant = §+ m2zx for any integer m. In other words, not only can there be

more that one solution function, but there can be infinitely many solution functions
(x) solving an equation f{x, y) = fx, ¥(x)) = K.

Example 1.13. Consider the equation fx, y) = x* + ¥ =— L. If we use the
_offox _ x

symbolism of the calculation above, we get Q= ——. There is of
y

dc  of/dy

course a problem, for there is no real solution function ¥(x) to X2 + y(x)? = - 1.
of /ox
3f 3y
hypothesis that there exists a solution. But, there may be not even one solution
point for the relation, let alone be points generated by a solution function Y =y(x).

Example 1.14. Let’s start building up the types of example we can work with.
Instead of one equation in two variables, we can look at the problem of one equation
in three variables. For example, x + 2y + 3z = 5. Of course, in this case, it is
straightforward to see that the third variable z is determined as a function of (x, ).

. d .
Remember, however, that the equation v _ was derived under the

Indeed, we obtain an explicit solution z = é— [5 —(x+2 y)] i

. Example 1.15. Just as with two variables,.however, it is not difficult to produce
examples in three variables for which one cannot obtain an explicit solution z= z(x,
). For instance, consider the equation x* + sin y + * + sin z + 2> = 1. Instead of
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entering into ad hoc calculations for this special case, let’s take a cue from our

progress so far with the case of two variables. In other words, consider the

general case of one equation in three variables, an equation of the form f()f, y,z)=K,
where K is constant. If z = z(x, y) exists, what can we infer? The equation can be
written f{x, y, z(x, ¥)) = K. The left hand side formula. depends on two vanablés,
and so we can consider two partial rates of change, in other \jvords, two pa'lrtxal
derivatives. Because of the Chain Rule, this produces the following two equations:

1,0, .92
2 T e

i)j—(-0+§j:-1+a—f—-§£=0 ,
ox oy dz dy o

Much as in 6ne variable calculus, let’s see if we can isolate the (partial) derivatives
of the sought after unknown function z = z(x, y). Rewriting, we obtain

¥, ¥,

ox 0z ox

oo 0
dy 0z oy

4

Of course, as long as %]: #0, we can solve this algebraically. This means that
. 0z

at each point (, , z) that solves fx, , z) = K, if z = z(x, y) exists, then its two

% ¥
’ . ox 1 |ox .
partial derivatives must be given by the equation oz =- (_al—) P . And, if
oy oz )| dy

fx, y, z) is differentiable, then the right hand side of this l.ast equation is a well
defined pair of explicitly defined slope fields defined at points (, y, 2). $o, once
again, reversing the logic will depend on knowing .whether or not we can integrate
slope fields to produce an implicitly defined function.

Example 1.16. Will the approach work for a larger number .of variables, for
example, five? Let’s construct an example to check thlS. out: (?ons1f1er the equatlon
2 +y> +24+u’ +1° + sinv=1. The problem is to see if this implies the existence
of an implicitly defined v = w(x, y, z, u) satisfying (at least lo.cally) the equation
Py +2+d0+ 0y, 2, ) + sin (v(x, y, z, w)) = 1. Agam, we may use the
Chain Rule to differentiate and so obtain information about the relative rates of
change. This calculation gives a system of four equations

5 Q _a_‘i = O
2x+6v ax+cos(v) o
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LR

ov
3y +6v —+c
y* +6v > os(v)ay

4y’ +6V° %y‘iﬂ:os(v)% =0

av v
4 46y — = =0
5y +6v au+cos(v)au

We are trying to isolate the partial derivatives of the unknown function v=(x, y,
z, u). Basic algebra leads to

|:6v5 + cos(v)] % = — [2x]

[6v +cos(v)]§;- - 3]
l:6v5 + cos(v):l %v_ = [4/]
Z

|:6v5 + cos(v)] g—: =_[5"]

So, if a solution v = (x, y, z, u) exists, and if [6V + cos(w)] #0, then we obtain
explicit formulas that the partial derivatives must satisfy, namely,

% =— [6V° + cos(W)]" ! [2x]
%J‘f =—[6v° + cos()]"' [3Y7]
% =- [6v° + cos()I" ' [4/°]
%;i =—[6v° + cos()] ! [5);4]

Example 1.17. It would seem that the approach will work for one equation in
any number of variables. What about increasing the number of equations? Does
our approach work for two equations? For three equations? For more? Let’s open
things up a little, and look at the case of two equations and four unknowns. As
above, simple illustrations can be obtained by looking at linear equations. Take, for
example, the two linear equations given by

x+2y+3u+0ev=4
S5x+6y+0eu+Tv=_8.

Evidently, this implies that

3utQev=4—-(x+2)
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Oeu+7v=8-(5x+6y).
Elementary algebra gives the solution

= %[4-(x+2y)]

vy = —;—[8—(5x+6y):|.

This indeed provides an explicit solution for u = u(x, y) and v = v(x, y). But, just
as arithmetic can hide underlying algebraic pattern, in the present case it can be

 helpful to try to keep track of the operations involved in the calculations. The

4u+0ev=4-(x+2y)
Qeu+7Tv=8-(5x+6y)

is a pair of linear equations and so one way to keep track of the operations is to use
matrix notation of linear transformations. We can rewrite this last pair of equations

B ﬂ [ & ((52126);))]'

equation

Clearly, the diagonal matrix is invertible, and we obtain

e [ o o)

Example 1.18. The matrix equation of Example (1.17) is of the form

L

e u h x
If B™!, exists, show more generally that [ }= B {l:k:| 4 [Y]} -
v ‘

o . o . o oz
?a;'l+5§°0+a_z'5;—0
o o . o oz
- $-0+—a;-1+§z—-5y-—0
0z
ax
o |
dy

What is the criterion needed for the existence of Bhe inverse matrix?

Exercise 1.25. Use matrix notation to solve

explicitly for
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of oz
2z 0 ¥ ox
Solution: 1f det| %% #0 (or equivalently = 0) we obtain =
of 0z oz
0 et -
oz _ dy
¥ L, T[¥
| az ox
o x| lY|
oz dy

Example 1.19. Let’s now look at the general case of two equations in four
variables. This case has enough complexity to begin to reveal how the general
result will go for several equations and several unknowns. Suppose therefore that
we have two equations of the form

S, v, u,v) =K
gt y,uv)=1L
where X and L are constants.

Now, for a moment, recall what happens when these are linear equations. For
instance, see Example (1.16). Gaussian elimination reveals that it is typical that
two linear equations in four variables can determine two of the variables as functions
of the other two variables. The situation in this Example (1.19) is similar, but the
equations are not necessarily linear. As in Gaussian elimination, the objective is to
determine two variables u and v as functions of the other two variables x and y.
That is, we seek u = u(x, y) and v = v(x, y). If these functions exists, we may write

S, y, ulx, y), vix, y)) =K

g, y, ulx, y), vx, y)) =K.

Each equation has two partial derivatives, with respect to x and y respectively.

If the examples so far are anything to go on, there will be four unknowns, the

du dv du dv
ox’ ox’ 8 8

u = u(x, y) and v = v(x, y). Indeed, using the Chain Rule, we obtain

Vo W ¥
P B AW

AP AR A
0 o1 =
» T Touay ov oy

dJg 1+Bg 0+Bg Ju ag ov

ox dy ou Bx v ox

four partial derivatives — corresponding to the unknown functions
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9 ,0+98,,,98,0u 92, _,

ay ay du dy dv dy
Organizing this somewhat we obtain

af f 0+af ou af 8v+0.@_+ v -0

o ay du ox av ox oy 8y

F o u v of ou of v _
IRCANP, Oo—— Oc— et ——— =
PR LR - W A Wl Wt W W

a—g- Bg O+ag au+a—g §X+0-a +0._81=0

ox By ou dx dv ox oy oy
a—g-0+§g-l+0-%—+ ov dg du dg dv

Qe —+ =0 —+=0e— =0
PR x  ox ou dy ov 9
Our objective is to isolate the unknown partial derivatives a_u’ 91, a_u’ Q
O0x dx dy dy
Writing this as a linear matrix equation, we obtain
¥, o [
du o ox ox
o o ¥ ¥|Z| ¥
ou ov||ox| |oy
=
% % o ofl:| |
ou dv dy ox
o o & |lw|l |
R du dvl|dy| | dy |

If the inverse of the matrix that multiplies on the left exists, then we can
directly solve for the unknown partial derivatives. What though is our criterion
for a matrix to have an inverse? From Section (1.4.5), it is the determinant
that gives us the needed criterion. In the present case, that determinant is

Yy v 4
ou ov
0 0 _‘?J: F
d ou ov
et .
%2 9% 4
Ju ov
dgg og
L 0 0 Jdu ov
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Remember that the general determinant function is alternating and multilinear.
You might also check a reference to find out why the determinant of a matrix is the
same as the determinant of the transpose of the matrix. (This is a straightforward
calculation for a 2 x 2 or a 3 x 3 matrix. The general result takes some care, and also
has reaching implications.) Now, if we interchange the two middle TOWS, we get

[or of ]
ou v 0 0
& % ¥ ¥ [¥ ¥
ou ov wu o u  ov
—det = det| %% V |det| o ov
o o ¥ | Tl x|"e a
ou ov CLou  ov ou ov
0o o 9% 9
. ou  dv]
Note the sign change because of the determinant function being alternating.
¥ I
Consequently, if det 8; gv # 0, we can solve the system and obtain the
%8 98
ou oJv
explicit solution, not for the unknown functions % = u(x, y) and v = v(x, y), but for
. . .. Ou dv du ov '
the partial derivatives Fw 5, 5 of the unknown functions. That is
(_a_li— F_ai a_f 0 O T Fal—
gx ou v ox
v
. 0 0 al E)i ai
ax - du ov| |y
ou dg og og |
oy ou v 0 0 ox
w1y o % %||%
] L ou vl |ay]

Note that at this stage, we have not yet solved the implicit function problem for
two equations in four variables. We have shown that if solutions u = u(x, y) and

_ o

V=W, y) exist for f(x, you y), v(x, y))~ . ,and det du v # 0, then
gl yulxy)v(xy)=L % o
ou v

the partial derivatives must be given by
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Wl oy ¥y o, T[Y]
ax au —a; ax
I 4 B
ox | _ » ou ov| |
oul  |dg og g |
——— —_© o 0 o
dy ou ov 0 ox
[ 1o o %= |2
| 9y | A du dv] |y
But, what we really need to do is be;_ able to argue the other way. In other words,
E ) T ]
ox w o O Y o
¥y g_ o o ¥ ¥ 31 |
: ou dv 2 ou dv y .
f det 0 and = - , and if
B I " M N R " P I |
ou Jv oy du ov ox
ov dg dg og
hdd 0 0o = 2| |Z=
| dy | L du ov] |oy]

50Nk -
, can we
. g(xo,yo,uo,v°)=L
somehow use the formulas for the partial derivatives to infer the existence of
solution functions u = u(x, y) and v = w(x, y) satisfying 1* = u(x, y°) and +° =

f(x, ¥, u(x, y), v(x, y))= K
g(x, ¥, u(x, y), v(x, y))=L

we have a starting point (x°, 3°, «°, 1°) that solves

w(x®, 3°) as well as the system of equations for all

(%, y) close to (x°, y°)?

General Case of the Implicit Function Theorem

As we have seen in each of our examples so far, one approach toward showing the
possible existence of implicitly defined functions reduces,; at a critical stage of the
calculation, to the question of whether or not we can invert a multi-variable linear
equation, and then integrate that system of explicitly given partial derivatives. So it
may come as no great surprise that to complete the investigation would require a
fuller discussion of the Inverse Function Theorem. That would of course go beyond
the purpose of these introductory notes. However, stopping short of this more
complete discussion, it may nevertheless be useful to go at least a little way toward
the general Implicit Function Theorem.

In the simplest case of linear equations, you may again recall using Gaussian
elimination. For example, consider the already row-reduced system



44 Pathways fo Real Analysis

Ix+4y+5z+u+0v=10
2+ 6y + 82+ 0u+v=20
This clearly provides functions u = u(x, y,z) and v=1(c, y, z) given by
u=10-(x+4y+5z)
v =20-2x+ 6y + 82).
We can generalize the linear equations as follows: Let A be a 2 x 3 matrix, A be

X

' u
a 2 x 1 matrix of constants, and consider the form [ :I= A-A|y|. Evidently,
%
z
x
this may be written in the form —A Y|+ [u]_ A=0. Of course, for the more
‘ v
zZ

general problem, the system of defining equations need not be linear.

What though about the number of equations? In each of our examples we find
that, much as for linear systems, for one unknown function # we need one equation;
for two unknown functions u, v we need two equations; and so on. In other
words, as a general requirement, in order to be able to solve for m unknowns u,
Uy, ..., thy, we will need m equations.

A linear system would of course be a special case. Indeed, if you are familiar
with the general results of Gaussian elimination, when the system is linear, the
Implicit Function Theorem (stated below) reproduces basic existence results for
Gaussian elimination.

For the set up of the general Implicit Function Theorem, we first suppose m
variables u,, u,, ..., Uy, 1 variables x,, x,, ..., x,, and a number of equations that
equals the number m of unknown implicitly defined functions Uy, Uy, ..., U, In
other words, we suppose a system of equations of the form

S, xy, oo, Xps Uy Uy ooy Uy) =0
Sy Xy vy Xy Uy, u,)=0

fm(xl, x2, ceey xn, ul, uz, ceey um) = O.

We now have more variables in play, but the problem is directly analogous to the
special case problem stated for the equation of the circle. [See also F igure (1.29)].
In the general case though, instead of seeking one implicitly defined function y=
() satisfying the single defining equation x> +3? — | = 0, we now seek to determine
the existence of m implicitly defined functions uy(xy, Xo ..oy ), (s, X35 ves Xp),
cos U (X1, Xy, .y X,) simultaneously satisfying all of the defining equations
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u-axis

Xx-axis

Figure 1.31

. ) =0
fl(xl,xz,...,xn,ul (x,,xz,...,x,,), U, (xl,xz,...,x,,),...,um (xl,xz,...,x,,))

. . =0
f’z(xl’xz’”_,xn,ul (xl,xz,...,x,,), U, (xl’ Xyseees xn)""’ u, (xla Xysee axn))

. =0
fm (x]$x2""’xn’ul (xl,xz,..., xn), u2 (xly xz,-.-,xn)9-.o, um (xla ng...,xn))

If we suppose that we have solutions through some starting point @, uo)., then
we can differentiate each of them equations, with respect to eac'h of the yanables
X} Xy, -..5 X, in turn. Using the Chain Rule, we then obtain a matrix equation of the
form V. f+ V f+ V.u =0, where f= (1, f5, ...,.fm),. u = (uy, U, ooy um)', x= (?cl,
Xy, ..., X,) and the subscripts on the nabla V 1ndlcat.e partial de.rlvatlves with
respect to the variables indicated by the subscripts. This last equation becomes

 VSeVa=-Vf

If it happens that the matrix V,f'is invertible, that is, if det V,f# 0, then we
obtain

Vau=—[VfT eV |

In other words, we obtain an explicit and well defined system of slope fields for
the partial derivatives of the unknown functions u,, uy, ..., u,,

As long as knowing the slope fields is enough to infer the existence of the
functions themselves, then a solution is obtained. As already discusssad, geometry
suggests an affirmative answer, at least as long as the qu:antitie's involved are
sufficiently smooth, and as long as there is at least one solution point from wh}ch
we can start following the partial derivatives to trace out the surface of a solution

function. Indeed, as our examples and calculations suggest, the so‘lution‘ of tye
Implicit Function Problem can be reduced to invertin.g .(fmd ir%tegratmg) a special
system of partial differential equations, from a given initial point.

Because of the fact that this approach relies on the existence ot.‘ the inverse
matrix of functions determined by [V, /"1, a proof of the Implicit Function Theorem
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naturally depends on details that come from the general Inverse Function Theorem.

— the proof of which is beyond the scope of these notes. Still, perhaps it is becoming
quite plausible that, at least under certain conditions, the Inverse Function
‘Theorem implies the Implicit Function Theorem.

One common version of the Implicit Function Theorem is stated as follows:
TaEOREM 1.2. Suppose that the system of equations
VfeVau=-Vff
ﬁ(xl,XQ, ...,x,,,ul,uz,...,um) =0

f‘z(xl,xz,..., xn,ul, uz,.-., m) = O

S (xl,wxz,...,x,,,ul,uz,..., m) =0

is defined by continuously differentiable functions f= (1}, f5, ..., /) defined for ali
(%15 X5 +vs Xy Uy, Up, ..., u,) in 7" X 7™, Suppose that (x°, u%) is a particular
solution to f{x°, u°). If when evaluated at (x°, u‘ﬁ, det V,f# 0, then there exists an
open neighborhood of 4 of x° and an open neighborhood of U of #° and a unique
function u = (uy, uy, ..., u,,) : A — U satisfying u(x®) =4 and f{x, u(x)) =0 for all
x in 4. Furthermore, this solution function u : 4 — U also is continuously
differentiable. ‘

Example 1.20. Consider f{x, u) = 4x + u* = 1. This example is selected because
we can first use basic algebra to solve the problem. Then we can compare to what
we get if use the Implicit Function Theorem.

1 1 1 1 1 1
If x==, then u2=l—4(—). So u=\/t=— or y=—,|—=—— . [
8 8 2 2 2 207

1 .
other words, for x= 3 there are two solutions, and so two starting points that

solve the equation 4x + «? = 1, namely l, \/I and l, - \/I .
8 V2 8 2

If we try another x close to x=%, say within %-——-1—<x<l+i, then we

32 8 32

can repeat the same algebra to get another choice of solutions, u =+ J1-4x or
u=~,/1-4x . Of course, the only way to obtain a continuous function is to be

consistent in our choice, that is, either stay with the positive values u =+ ,/ 1-4x
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or stay with the negative values u=- J1—4x . Otherwise, if we mix these

answers, taking some positive values for # and then taking some negative values
for u, the heights u will be jump back and forth across x- axis, and the set of
solution points we get will clearly not determine a continuous function u = u(x).

So, if we happen to start with the solution (%, \/g J , then in order to have a

continuous function u = u(x) that solves 4x + u*> = 1, we will need to stay with the

)i' .
positive values for u. In other words, given the starting point (% , \/g J , the solution

function u = u(x) is unique. Of course, given the starting point (%, - \/_%‘ ] we get

another unique solution function. So, it is not that there is a unique solution function as
such, but the function becomes unique once we specify the starting point (x°, 4°).

If we now instead take the approach of the Implicit Function Theorem, we

start with an initial point that solves the equation, for example, [%, \/g ] Now, -

since f{x, u) = 4x + u® = 1, we get det V= 2u. At the initial point (%, \/g J LU=

7—15 # 0. The Implicit Function Theorem now tells us that there exists a unique

solution function u = u(x) that both goes through the point (%, \/g ] and that

locally solves the equation 4x + #? = 1. Note again that while the Implicit Function
Theorem provides the existence of a solution, it does not provide an explicit form
of the solution.

" We now have some indication of how the Implicit Function Theorem depends
on the Inverse Function Theorem, or rather that Inverse Function Theorem implies
the Implicit Function Theorem. As you may now be aware, there are significant
differences between the two theorems. Where the Inverse Function Theorem
provides criteria for when an inverse function exists, the Implicit Function Theorem
provides sufficient conditions for the existence of (possibly many) functions that
solve an initial set of equations. Uniqueness is obtained only if we assume a given
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starting point. Still, the calculations we have done so far are beginning to reveal
that the two theorems are intimately related. And so the question can arise, can we
go the other way? :

Does the Implicit Function Theorem imply the Inverse Function
Theorem? '

To explore this question, let’s go back to the familiar example y=41-x%, the

function for the upper half circle in the (x, y) plane. If we restrict to 0 < x < 1 this
function is invertible. To see that, one may appeal to classical geometry. To be sure
that we avoid circular logic however, it is better to invoke the one variable calculus
version of the inverse function theorem. Taking the derivative, we get

Ll =——2 _ Onthe open unit interval this is strictly negative, from which it
dx J1-x°

follows that the function is strictly decreasing and invertible on that open interval.

For this one example the problem then is solved, that is, y = \/ 1-x? isinvertible
on the open interval 0 <x < 1,

What we are looking for though is a rather more general result. Our question is
whether or not the general Implicit Function Theorem implies the general Inverse
Function Theorem. That may be a high aim. But, if we look at this special case
carefully, it is in fact possible to get some very good clues. To do that effectively,

we will need to lift our view beyond the particular form of the function y= ,/ 1-x%,

and instead pose the question in terms of functions and operations. It is probably
now a familiar fact to ) you, that the Implicit Function Theorem does not provide an
explicit solution, but the existence of a solution (implicitly defined). So, here we
also should not be looking for an explicit inverse, but for existence of an inverse.

Suppose then we are given a function y = f{x), such as y=4/1-x% . If an
inverse exists then there is a function x = g(y) such that y = feg®») =

J1-g(®»)?=y. Or, more briefly, y = flg(y)). The Implicit Function Theorem

regards systems of equations, and so rewriting this as an equation we can say that,
if an inverse exists, then there is a function x = g(y) such that ey —-y=0.
Coming closer to the form given in the Implicit Function Theorem, given the
function y = f{x), consider the equation G(y, x) = f{x) — y = 0. Note the reversal of
symbols — we use (y, x), not (x, ). That is, we bring our problem into alignment
with the statement of the Implicit Function Theorem. In the Implicit Function
Theorem as stated above, it is the function on the right that we produce as a
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function of the variable on the left. But, in the present problem, we are trying to
find x as a function of y.

| 3 1), :
Now, observe that (%, x%) = (—\/;—, %} is a solution to GG®, x%) =x%) - ° =0.

The Implicit Function Theorem tells us that if det V.G # 0, then there exists a

| unique function x = g(y) such that ?12— =g [ g] and such that on a neighborhood

of x° = % we have G(y, x) =y — f(g(»)) = 0. But such a function x = g(y) is clearly

an inverse for y = f{x). Note that in this special case where y = f{x) is a real valued

function of one real variable, det V G = Zi . In other words, as one would hope,
x .

the Implicit Function Theorem reproduces the special case already known from
basic one variable calculus.

Can we go further now? We are trying to get at the general case. Suppose then
that y = f{x) defines a function from ~ ™ to ~ ™. Is there a way to use the Implicit
Function Theorem to determine whether or not the function f: ~% —» ~ ™
is invertible? Taking our cue from the discussion above, consider the equation
G(y, x) = fix) — y, where the symbols f{x) and y now represent quantities in ~ ™.
Suppose that GG°, x%) = fx%) — ° = 0 and that det V_f# 0. Then, by the Implicit
Function Theorem, there is a unique function x = g(3) defined on an open
neighborhood of x° and satisfying G(y, g(»)) = fg()) — y = 0. This of course
means that x = g(p) is the inverse function we are looking for.

Note 1.1. To go further would take us well beyond the introductory purpose of .
this book. We hope though that you now have some initial understanding of the
Inverse Function Theorem, and how it is closely related to a theorem called the
Implicit Function Theorem. For further study of these matters and rigorous proofs
of these results, the reader may enjoy consulting one of the many excellent texts
on advanced multi-variable calculus. There is, for example, the book by Jerrold E.
Marsden and Michael J. Hoffinan that has become a modern standard.



Discovering Calculus

Topics: Questions starting from antiquity, up to initial breakthroughs and advances
of Newton, Leibniz. The derivative and the Fundamental “Theorem” of Calculus.
Fruition of these notions in the definitions of Cauchy: convergence, derivative and
the Cauchy integral. Power series.

2.1 AREAS

In the 5th century B.C.E., the Greek philosopher Zeno of Elea (ca. 490 B.C.E. -
ca. 430 B.C.E.) posed what is now called “Zeno’s Paradox”. The apparent paradox
led to much reflection, both mathematical and philosophical. The problem involves
a distance to be traversed, say 2 yards. Suppose that a tortoise first travels one
yard, and then 1/2 yard, and then another 1/4 yard, and then 1/16th yard, and so
on. The paradox claims that the tortoise therefore cannot arrive at its destination.

Notice that the puzzle as stated does not mention anything about time. If the
tortoise takes the same amount of time for each stage of its journey, then certainly
it would seem reasonable to conjecture that it would not reach its destination. Is
there really a paradox?

Be that as it may, the puzzle carries with it an interesting arithmetic problem.
Let’s look at a diagram, such as Figure 2.1.

Figure 2.1

We discuss an approach to dealing with sums (of rétios) that was familiar to the
great mathematician Archimedes (third century B.C.E.). As can be seen from the
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diagram, at each stage of its journey, the tortoise is shy of the 2 yard mark. The
distances traveled are as follows:

1

. 1 .
1+% < 2. By how much? In other words, 1+ 0 = 2 — (something).

1 1
i I+-=2-—
Evidently, 5 3
We may continue this reasoning.
1+—1—+l < 2. By how much?
2 4 '
1 1 1
l+—+—=2-—
2 4 4
1+l+—1-+l<2.Byhowmuch?
2 4 8
1. 1.1 1
l+=+—+==2-=
2 4 8 8
1+l+l+l+—l— < 2. By how much?
2 4 8 16 )
1 1. 1 1 1
—t—F—t—=2~=
1+2 4 8 16 16
Conjecturing that the pattern continues, we get
1+l+l+l+...+i=2_in
2 4 8 2" 2

We can look to verifying this general formula later. In the meantime, notice that
n counts the number of stages in the journey, beyond the first yard. As » increases,

1 1 1 1 5
. 1to: 2—-—,2——,2——,2~—, and so on. In
we get distances traveled equal to: 2 2273 16 32 _

other words, as the number of stages in the journey increases (or as » increases),
the closer the distance traveled is to 2 yards. There is, as it were, a target value of
2 [Bressoud, 11].

| - L.
For another example, let’s look to sums of powers of 3 Might a similar approach

be possible?
. 1
Exercise 2.1. Make a diagram similar to Fig. 2.1, but for adding powers of 3

Let’s see how the sums work out.
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1
1+ 3 < ? In other words, what should we put here? In the first example, this
was the target value. Evidently, we can’t use the same target value. What might be
a good candidate? We need something that in some way depends on the fact that

this time we are using, not 2’s, but 3’s. Following that clue, how can the 1 + 1
' 2

and the target value 2 both be expressed in terms of 2, and perhaps fractions
involving 2, the point being to hopefully see a pattern that might carry forward to
the case of using 3’s?

One way to do that is to observe that 1 + % <l+1=1+ 1

(2-1)
S
Then 1 + (T—T) is the target value.

Might the next case also be so concise? In other words, does a similar pattern

work for the powers of %

Cleary, 1 + % <1+ %, where the denominator “2” of “%” is simply 1 less

than 3. If 1 + —;— is the target value, how far is 1 + % from that target? Consider

then
2 3) 6 (3-2)
That is, 1+1=(1+1j_ 1
3 2) (3+2)
So far so good. Does a pattern emerge?
Is 1+l+1<1+l,and if so, by how much?
39 2
This time 1+l+l=(1+_1.)_ 1
39 2) (9+2)
For the next case, 1+l+—1-+L=(1+1j_ 1
3.9 27 2) (27+2)

~ Conjecturing that the pattern continues, we get
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1.1 1 1 3 1
l+—F—+—+.t— = =—

39 27 3"2[(_n).-§j

Exercise 2.2. Using the same approach, develop a formula for sums of powers

of —1-
Clue.'1+l<1+l’
4 3
Formula: 1+—1—+—1—+ L +,,,+i _4_ 1
4 16

64 T4 3 [67)3]
Note that the purpose of the Exercise is not just to get the answer, but to

become familiar with the details of the approach.

Exercise 2.3. Using the same approach, develop a formula for sums of powers

1
f—.
"3

1

Clue:1+-—<1+l,
5 4

Formula: 1+l+—1—-+—1—+... 1.5 1

5 25 125 5" 4

6")-4]

Let’s now go on to a geometry problem that was solved by Archimedes, the
solution of which involved rather similar patterns of sums as in the story of the
tortoise. To set the stage, recall that in geometry we
have area formulas for standard figures such as’
rectangles, parallelograms, and consequently for
triangles as well. By using such standard figures to
approximate, we can get some insight into other
figures as well. We can even get a formula for the
area of a circle. For a circle of radius #, a square of
dimensions r X r is easily seen to cover one quadrant
of the circle. We can ask how many of such square
quadrants (of dimension r X r) are needed to cover
the area of the whole circle? See Figure 2.2.

-Figure 2.2

. [Circle Area]
-

Classical geometric argument reveals that the ratio doesnot de\pend

on the radius. This special ratio is therefore given its own symbol 7; and for every
circle of radius 7 its area is given by 4 = m?. From the diagram, the ratio 7 is
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evidently less than 4. The ancients used approximating triangles to show that zis

more than 3. In other words, the ratio 7 is some number somewhere between 3
and 4: 3 < r< 4.

What though about other geometric figures?

Question 2.1. For example, whét is the area under a parabola bounded by a
straight line segment 4B, as seen in Fig. 2.3? -

/.

Central axis of parab

Figure 2.3

Archimedes (39 c. B.C.E.) gave a sophisticated geometric solution to this problem
_that involved subtle combinations of geometric constructions and large sums of
ratios [Heath, pp. 233-252].

As in Figure 2.3, Archimedes used triangle AABC to get a lower estimate on the
area under the parabola.

Let M and N be the midpoints of 4C and BC; and let MD and NE be parallel to
the central axis of the parabola. Archimedes then used geometric results known in
his time to show that the areas satisfy

ACDA = é (AABC) and (ACEB) = % (AABC)

It follows that ACDA +ACEB = % (AABC)

[Burton, p. 198; Eves, p. 382]

Notice that AC and BC are again straight line segments under the parabola. So,

if we again fill in areas under the parabola in the same way, we can use the same
argument. '

If we sum the results to the layers of triangles nestled under the parabola, we

get a sum of triangular areas that, as seen from the diagram, approximates the
actual area more and more closely. .
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' 1

e 1 _ C

From ourc;alculations, the first approximation is (AABC) + 2 (AABC)=(AABC)
1
+ ——

e
The second approximation is

(AABC)+ i(AABC) + i(AABc) = (AABC)[I + % + %]

16
The third approximation is i
1
1 L (aABC) - Lld]
(AABC)+ %(AABC)+ Tg(AABC)+ a(AABC) = (AABC)[I It ete
And SO on.

After the n'" stage, the approximating sum of triangular areas nestled under the
parabola is

1 1+_L+_l_+ +—1—:|
BABO I et et H

But, what does that tell us? Evidently, part of the problem is to understand how

to add powers of l .\ But, we already have a solution for that kind of sum, namely,
-+
1,+ 4 3 \4)\3
4+
AT I (16 3
1 1 1

iets 3 (@)5)

N

4=+ —4—

‘ 4 . s
Each of the sums is less than 3 As we add more triangles, though, the sum

get closer to 4/3.
With Archimedes, we can jump to the ge_:neral case

1,1 1, +i=(i)_(L](l}
1+Z+E+64 e 4n 3 4}1 3

How does this help us see what the area under the parabola is?
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As we add more triangles under the parabola, the sum of powers of 1 is

4
always less than 3 But, the short fall to ; gets smaller and smaller.

As Archimedes observed, the area under the parabola therefore cannot be less
4
4 o s 4
than 3 (AABO). Fo;, if K is any number less than 3 (AABC), looking at our
formula, we can see that by adding enough triangles, we can obtain area under the

parabola that by-passes X and gets closer to ; (AABC).

Finally, from the diagram, the areas of the sum of tri
(] : 2 triangl
the area under the parabola. ‘ £ accumulate toward

We conclude that the area under the parabola is exactly 4 (AABC)
3 .

Key Insight 2.1. We can use finite sums of triangles to better and better
approximate (and consequently reveal) the exact area under a parabola.

Ijlxerc.ise 2.4. See Fig.. 2.4. Consider a parabolic region bounded below by a
straight line segment that is two units in length, perpendicular to the central axis of
the parabola. Suppose that the vertex of the parabola is one unit in distance in

parabolic region.

Figure 2.4

Notes 2:1. There is no claim that this result provides a rigorous definition
Indeed, while this type of approximation became a common technique in ancient.
apd modern mathematics (e.g- Kepler [Burton, 330]), definitions for approximation
did not emerge until the 18 century (Cauchy, et al), long after the initial discove
of calculus. Note also that the claim that the sum of triangular areas approximat?sl
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the parabolic area rests on an insight into the diagram, rather than on any axiom or
theorem. In the early days of geometry, there are numerous results that subtly
appeal to a diagram to justify a conclusion. It wasn’t until the 20% century that
some clarification was obtained on the rigor lacking in Euclidean geometry and,
for example, the need for a “betweeness axiom”. For some references on using
approximation to calculate areas and volumes, see [Eves, 382], [Bressoud, 9]; and
[Burton, 330].

2.2 RATES

Jon is a farmer with several acres of pasture that have lain fallow for some time.
Two roads border the property, one runs north along the western side of the field,
and the other runs east, along the southern side. See Figure 2.5. Jon has decided to
plow a square garden in the south-west corner of the field to grow vegetables for
a market garden.

TN

He has a roto-tiller that has different blade options. The largest blade gives a
tiller cut that is 1 yard across. He tills along the outer boundary of the square, on
each pass adding both length to the square and area to the garden. As the length of
square increases, it becomes more work to add each additional swath across the
boundary of the ever larger square. As the length of the square grows, so does the
area that is added each time he makes a pass along the boundary.

Jon is a curious fellow, and so while resting on the weekend he begins to
wonder about his project. He has the following question:

Question 2.2. In terms of its length, at what rate does area of a square increase?

Figure 2.5

He draws the diagram in Figure 2.6 below, and starts to calculate:

When the square is 10 yds by 10 yds, one pass adds 2(10) + 1 sq. yds. of new
area;
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100

50 100

50

10°
10

Figure 2.6

When the square is 50 yds. by 50 yds., one pass adds 2(50) + 1 sq. yds. of new
area,

When the square is 100 yds. by 100 yds., one pass adds 2(100) + 1 sq. yds. of new
area.

Is there a pattern to the rate at which the areas increase?

Except for the 1 sqg. yd. at the north-east corner, the area increases at a rate of
2(length) sq. yds. per pass, or numerically, 2(length) sq. yds. of area per yd. of
added length, ‘

Jon has different blade options for the tiller; and a shorter blade is sometimes
easier to use. He therefore wonders how the rate of change of garden area might
be affected by choice of a shorter blade.

Let’s suppose with Jon that the length of the square garden that we start with is

100 yds. in length, and that the tiller width is Ax. The starting area is then (100)?, A

while the new area is (100 + Ax)%. Looking to the diagram, the added area comes
from each side plus the corner piece, that is, the added area is 2 .[(100) Ax] +
(Ax).

More precisely, we can use algebra to calculate the ratio:

Changein Area _ (100+Ax)’—(100)" _ 2(100)Ax+(Ax)
Change in Length Ax - Ax

2

=2(100)+Ax.
If the blade width is % yd., then the rate is 2(100) +% sq. yds. per yd.;

If the blade width is % yd., then the rate is 2(1 00)'4-% sq. yds. per yd..
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If the shortest % yd. blade is chosen, then the rate is 2(100)+ % .

In other words, the smaller the change in length Ax, the closer the rate is to
being simply the boundary length of the square, 2(100).

Exercise 2.5. (i) Let’s open up the problem somewhat. Suppose that the garden
is x yds. by x yds.
(i) For a small change in length Ax, what is the main contribution to the ratio
Changein Area ,,
Change in Length i

(i) If the square garden is 150 yds. long, and the added length is T16 of ayd.,

approximately how much new area is added?
If the square garden is x yds. long, and the length is increased by a small
amount Ax yds., approximately how much new area is added?

Answers: (i) For small Ax, main contribution to rate is the length of the border,
2x (sq. yds. per yd.); (ii) Added area is approximated by the product of the rate

multiplied by the change Ax. In the present case this is [2(150)] (-116) =30sq. yds.;

(iii) This is the general case. Added area is approximated by the product of the rate
and the change Ax, that is, [2x] Ax sq. yds.

Key Insights 2.2. 1. We may use small changes Ax to better and better

approximate (and consequently obtain) the exact rate of change of a square
area.

2. We can turn this result around. If we have the exact rate; then for a small
change Ax, the change in area is approximated by the product of the rate (in
this case the boundary length 2x) by the change Ax, that is, [2x] Ax.

Example 2.1. Galileo was interested in the nature of free-fall motion. By rolling

~ balls down gently sloped planks of wood he created a controlled slower “free-fall”

(or rather, a “free-roll”). He compared measurements of distances and times, and
thereby discovered the Law of Falling Bodies: The distance an object falls is.
proportional to the square of time.

Using s for feet and ¢ for seconds as our units for distance and time, Galileo’s
result is that s = 1672,

Recall that average speed is the ratio given by distance/time.
For the following questions, you may assume Galileo’s Law:

How far does an object fall in the time interval t=1to =27
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What is the average speed for that second? For a small time interval ¢= 1 to £ =
I + At, what is the main contribution to the average speed?

How far does an object fall in the time interval t=2to =3 ?

Whe.lt is the average speed? For a small time interval =2 to =2 + At, what is
the main contribution to the average speed?

How far does an object fall in the time interval £ =¢, to t=1¢, + Az ?

Wha}t is the average speed? For a small time interval ¢ = tytot=1¢; + At, what is
the main contribution to the average speed?

Do the computations remind you of Jon’s garden? In other words, the average
speed can be used to approximate the exact speed at a particular time.

What is the exact speed at a time ¢ = ¢,?

Answers: For the time interval ¢ = ty to t=1, + At, the average speed is 16{[2¢,]
+ Ar}. The exact speed at = ¢, must therefore by 16{[2¢]} = 32,

Notice that as time ¢, increases, so does the speed 32¢,. How would you describe
what happens to the speed of a stone that is dropped off of a bridge?

Example 2.2. Jan is a carpenter, and is making wooden cubic storage crates.
The crates need to be strong, so Jan uses expensive hardwood along the edges of
each box. Suppose that a cubic box is x inches in length along each edge. Its
volume is then V= x3. If / inch of the expensive hardwood is added to each length
the volume increases. When the initial cube is small, the added volume is modestj
If the initial cube is large, an extra inch in length can increase the volume
substantially. This leads Jan to the following question:

Question 2.3. In terms of length x, what is the rate at which volume of a cube
increases?

’
.

=+ Ax
Ax
Figure 2.7

Suppose that we increase the length of the cube by Ax. Using Figure 2.7, it can
be seen that while volume is added along three edges and a corner, the main added
volume would seem to come from the three faces of the cube. For along each
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face, there is an added depth Ax. Each face has length and width x, and so the
resulting added volume across each face is x2Ax. There are though three faces. As
an approximation, the main added volume would therefore seem to be 3x°Ax.

2
The ratio Added Volume = AV is then approximated by A7 = 3x Ax =3x?
Added Length  Ax Ax Ax

cubic inches per inch of length.
How accurate is this approximation?

We can use algebra to get a more precise result.
AV = (x % Ax)® — (x)° = 3x%Ax + 3x(Ax)® + (Ax)’.
The ratio is then

AV _ (@A) —(x) 3 A+ 3x(Ax) 4+ (Ax)

Ax Ax Ax

Remember that the length x is the fixed initial length of the cube. The question
is what the ratio is for small changes Ax. In the last ratio, the two extra terms are
both multiplied by Ax and (Ax)? respectively, while the first term 3x? is unaffected
by the quantity Ax. So, the smaller the change Ax, the closer the rate of change is
to being 3x%, as anticipated from the geometry of the diagram. This can be called
the exact rate of change. ‘

Exercise 2.6. If the length of a cube is 40 inches, what is the exact rate at
which new volume can be obtained? If the length is increased by approximately
0.5 inches, what approximately is the added volume?

Key Insights 2.3. 1. We may use small changes Ax to better and better
approximate (and consequently obtain) the exact rate of change of a cubic volume.

=3x* + 3x(Ax) + (Ax)2 .

2. We can turn this result around. If we have the exact rate, then for a small
change Ax, the change in volume is approximated by the product of the rate
(in this case the surface area 3x?) by the change Ax, that is, [3x%]Ax.
Example 2.3. (Other integer powers of x) Suppose that x represents that number
of cells in a cell population and that the number of protein molecules is given by
R(x) = x*. For instance, if there are x = 10 cells, then the number of protein
molecules would be R(10) = 10* = 10,000. As with our other examples, we can
enquire into the rate at which the number of protein molecules increases, as
compared to the number x of cells present.

For Ax small,

AR = (10+ Ax)4 - (10)4 =4(1 0)3 Ax +[terms with higher powers of Ax]
So,

AR = (10+ Ax)" - (10)* = 4(10)° Ax+ [ terms with Ax*, Ax*, Ax* |
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and therefore
AR 3
— =41 i 2 AYS
= 4(10)° +[ terms with Av, Ax?, Ax°].
It now follows that for small changes in x given by Ax, the ratio of change is

approximately 4(10)? protein molecules per cell.

Notice that we did not need to make use of the binomial theorem. For it was

enough to identify the part of the ratio % essentially unaffected by the quantity

Ax. So, might this approach work for other integer powers of x?

Supl?ose that y(x) = x". For a change in x given by Ax, Ay = (x + Ax)” — (x)".
Following the rules of algebra, the terms are produced as products, one factor
from each power. We therefore get a sum of the form

0 A () (1) (A + () )" () () () ()
() - ()

= " ok () () () ) ()" () () ) ()™ - ()"
The ratio of change is
(et A)' —(x)" n-
e T () ()T () + () (1) ()
e () () ()™ 4+ (40)"!
. No matter what the coefficients (#) happen to be *, for a small change in x
given by Ax, the main contribution to the ratio of change is nx" ~ !. Furthermore

sinc_e 1x is fixed, the smaller Ax is, the closer the ratio of change is to this quantity
nx"~ . In other words, the exact rate of change of y(x) = x" is nx"~ .,

* For present purposes we do not require detailed knowledge of the coefficients
.(#). However, the Binomial Theorem was known in Newton’s time and explicitly
identifies the coefficients via the following well known expansion:

- n n n n— n n—
(a‘l'b) —(nJa +[n_1)a 1b+(n_Ja 1b+...+(3ja2bn-2
n n
+ ln—-l n
[ljab +(0)b

n!

n
where =
(k) (n=k) k!
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Notation
We have been developing a notion of “exact rate of change”. It is obtained from

ratios of change of the form % As Ax gets small, the exact rate is identified as

that part of the ratio —i—xz that makes the prevailing contribution.

Notation would be useful to distinguish the prevailing contribution to the ratios

from the approximating ratios. The symbolism that Leibniz used is % . Newton’s
i

symbolism is y’(x). Since this “exact rate” fjl: y'(x) is derived from the
X

approximating ratios for the given formula y(x), the exact rate % = y’(x) is

traditionally called the derivative of y(x).

Example 2.4. (Product Rule) In this example, suppose that that Jan and Jon
are working together on tilling a rectangular market garden. Just as in the example
above, suppose that the garden is in the south-west corner of a larger field. Jon
uses a roto-tiller and cuts east and west across the northern boundary of the
garden, while Jan is using a different roto-tiller, making north-south cuts along the
eastern boundary of the garden area. After a day of work, the garden is 100 ft.
east-west, and 50 feet north-south. See Figure 2.8. The next day, Jon and Jan
work for an hour. In that time, Jan clears an additional 6 feet north, while Jan
clears 7 feet east. What area of ground was tilled in that hour?

50

100

Figure 2.8

Except for the corner at the north-east corner, the area cleared is 6(100) +
7(50) sq. feet.

Exercise 2.7. Suppose that f{x), g(x) are two given functions, with derivatives
f7(x) and g'(x). What is the derivative of 4(x) = f(x) « g(x)?

Clue: See Figure 2.9. Represent the product as a rectangular area, with the
length of the northern boundary given by f{x) and the length of the eastern boundary
given by g(x).
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g/ (x) Ax) z A
S)

g )

£/ WAx
Figure 2.9

Each length has its own rate of change. That is, for small Ax, the changes in
Sx) and g(x) are approximated by f”(x) Ax and g'x) Ax respectively. Combining
the change in areas coming from the north boundary and east boundary, what is

the approximate total change in area? By evaluating the ratio w s
change in length
what is the exact rate of change? The answer is called the “product rule”: In the

dg
dx

Leibniz notation the result is written % ( I g) = & *g&+ f+—=. In Newton’s

dx
notation, the this becomes (f - g =fg+fr.

Example 2.5. (Quotient Rule)
Suppose that g(x) is a function, with known rate of change given by the derivative

%= g’ (x) If g(x) > 0 increases rapidly, then (1 ) decreases rapidly. In a
g(x

similar way, if g(x) >0 decreases rapidly toward zero, then (1 ) evidently will
g(x

increase. We are assuming that we know the function g(x), and the exact rate 2w
at which the function changes. Is this enough to go on and determine the exact

rate at which the reciprocal 1 changes?
g(x)

In order to begin working with 1 , it is helpful to know how this quantity is

g(x)

defined. Recall the algebraic definition of a reciprocal % is as the solution of the

productx«5=1.0Of course, the reciprocal of a function is defined in an analogous
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1. . .
way, that is, for g(x) # 0, —— is defined to be the solution of the product F(x) « g(x)

g(x)

1
. | 1, =1
= 1. In more familiar notation, g(—x_) is defined by the product e g(x)

! 1
) 1 . ‘o t —— | that
We are trying the find [MJ , that is, the derivative of the term I:g (x)}

1
happens to be a factor of the product g_(;j g (x) =1. But, we have a product rule.

Taking the derivative of the product, we get { . g(x)] =1’=0, which by

g(x)

g(x)

4 1 )
the product rule becomes [L} g(x)+ {E@J g’(x)=0. The only unknown

1 .
term in this last equation is the quantity that we are looking for, namely, {mjl .

Itis a \;vorthwhile exercise to- now solve for this unknown and so obtain that
-z
g(») g*(x)
_—g'(®

’ / — 4 1
T [l /8- g Lo p L
any quotient is given by I: 2 = g2 . Hint. g f 2

Example 2.6. (Fraction powers of x) Reca'll ttllgt the' exponc?ntia}l nolt?.;lontf?r
the positive square root of a positive number x is x ._Th1s notation is delil ere; 1:3 y
chosen to be consistent with the addition rule for 1nteger e?xponents. F or eln
x12 o g2 = U2+ W2) = 4l = 5 Similarly, the cube root is given by the formula

+(173) — 1 —
X130 x1B3 ¢ 513 = B+ (B + (1U3) — 1 — o
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As with other familiar functions, as x varies, so does the square root, the cube

root, and so on. It follows that we may ask at what rate the roots vary, as we

_ d xl/2)
vary the number x. Clye: (~ ={(2Y .
ue: We seek s (x ) - To find the derivative of x!2,

E;ev :&:ﬁd :10 iI;now what 1v/&z'e are W9rking with. In other words, it would be usefil to
¢ © detinttion of x™**. But this term is defined by the product x"2 « x1/2 =x; and
we have a product rule for derivatives! Calculating, we obtain ’

4
12) 172 Y
(x )x + 2 (x]/Z) =]
Y
2 (x1/2) 2 =1

’
(xl/z) - lx—1/2
What about thy "
at about the cub ich i i

__ tyat about the =ux;3 :o)c:t:) which is defined by the multiple product x3 « /3 « x'3
Th.In dthis case, a first calculation gives (x'3y (x!/3 . xP) + 513 (618 o 1By =
18 does not quite yet give us the i i :  the
product mals coite yet }% ' so}gtl,on.l}\lotlce though that we can apply the
gam. lhis gives 3(x"°)’ x'* = 1 from which it follows that

(x1/3)' - 1 13
3

Exercise 2.9. Using the definition x4 « x4 « 514 o 14  L(18)+ (1/d) + (18) + (118 _

x! =x, find the cierivative (;6:4) = (xm)’ .

Exercise 2.10. Using the definition x'* « X e g lin o (Un)+ e+ (Un)
n—times

=x! =x, find the derivative d(;”") = (x” ")' .
X

Exercise 2.11. Using the definition x4 « x4 « 34 o 34 — ,34) + G4) + 34y + (31
3/4 .
d (x ) - (x3/4)’
o :
Exercise 2.12. Using the definition x™" o o ... , puin, 1 (i) + 4 G

n—times

=x%, find the derivative

" = x™, find the derivative d (:;:n) = (x” " )’ .
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Exercise 2.13. Conjecture a rule for the derivative of any positive real power of
the form x% where o> 0 is real.
Exercise 2.14. What is the derivative of x~'? Clue: One approach is of course

to use the result that [ ! ] = —g2 (x) . Another approach is to go back to first
glx)] £

principles and use a defining equation for x~ 1, namely, (x‘l ). x=1?

Exercise 2.15. What is the derivative of x™%3? Again, in the present context
there are two natural approaches. Explore this questions for other negative fraction

powers of x of the form x~ mn where 2250
, n

Exercise 2.16. What is the derivative of any negative real power of the form x™ %

. . .- 1
where ¢ > 0 is real. Again, for one approach we may write x™“ =—- and use
x

Fox%=1.

1] -g'(%) . . o
|: :| =— . Or, going to first pnnmples, we may write x
gl®)] £

Exercise 2.17. Conjecture a general rule for the derivative of any real power of

the form x%
Example 2.7. (Chain Rule): Suppose that a car gets 30 miles per gallon, and
uses 2 gallons per hour. How many miles per hour is the car traveling? In other

; and if we also know the rate gallons , then
hour

words, if we know the rate miles
gallon

we can simply multiply the results to get the rate Tles .
our

Example 2.8. (Chain Rule): Suppose that gear A is connected to gear B; and
that if gear A rotates once, then gear B rotates 3 times. If gear A rotates 4 times per
second, how often does gear B rotate per second? See Figure 2.10

Figure 2.10
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Now, consider two functions C = f{y) and y = g(x), connected not by teeth of
a gear, but by mathematical composition. That is, let C(x) = fg(x)). What is the
derivative of this composition?

Clue: For a small change Ax near x, the change in g(x) is approximately Ag =
2 (x) Ax. But, just like when one gear is connected to another, for this small change
Ag=g'(x) Ax near g(x), the change caused in the next function f{x) is approximately

f(g()) Ag(x) = f(g(x)) [g'(x) Ax] = f(g(x)) & (x) Ax.
Putting this all together, we have that a small change Ax near x causes an overall
change in the composition given by A[fg(x))] = f(g(x)) g'(x) Ax. We therefore

A .
obtain the ratio of change _I:i(fxﬁcm ~f’ (g (x)) g’ (x); which leads to the result

that (fig))’ (x) =f{g(x)) &€®).
Have you ever wondered why this is called the “chain” rule? There are several
reasons, one of which is obtained by recalling a traditional notation for the

composition of two or more functions: The composition f{g(A(k(x)))) is also written
(fo g o h o k) (x). Do you see links of the “chain” of dependence?

Example 2.9. (Derivative of an Inverse Function)
Solve for x in the equations 40 = 5x; 50 = 5x; 60 = 5x.
More generally, given y, find the number x such that y = 5x.

This is called solving the inverse problem. See Chapter 1 Discovering the Inverse
Function Theorem.

In the present example, the inverse function is of course just f -1 ( y) = % y.In

other words, to undo multiplication by 5 it is enough to simply divide by 5. For any
non-horizontal line y = f{x) = mx, m # 0, solving for x in the same way, the inverse

function is easily seen to be £~ ( y) = 1 y . Using the terminology of calculus, the
m

derivative or slope of f{x) = mx, m # 0 is f(x) = m and the derivative of the inverse

, 1
function is simply the slope ( f '1) (y) =—.
m
Exercise 2.18. Use algebra to find the inverse function of the line y = f{x) = mx

+ b, m # 0. What is the slope of the inverse function?

Can we extend our work to other functions? That is, if f{x) and its derivative
f(x) are known functions, can we then determine the derivative (f~ ) @) of the
inverse function £~ ! ()? -
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One way to approach this is to refer to the geometry of the situation. Near the
reference point (x, f(g)) on the graph of fx), the function is approximated by the
tangent line whose slope is f(x). In Example 2.19 and Exercise 2.18 above, the
slope of the inverse line is simply the reciprocal of the original slope. So, in as
much as the inverse tangent line approximates the inverse function, we might

anticipate that the slope of the inverse function will be —F But, where is this

| 1 11
function to be evaluated, that is, — at what? Or, in symbols, — =——— ?
o rore
*
The reference point for fis (x, f{x)), so the reference point for the inverse
function is (f{x), x). From using this geometric and algebraic argument, we can
therefore anticipate that the derivative of the inverse function will be given by

1

(f _1), (@)= )

Note, however, that at this stage of our calculation, the ( f "’), ( f (x)) = 7,1(—)5

is in terms of the variable x. A complete solution would require a formula in terms
of y. But, under the hypothesis that the function f{x) has an inverse functionf~! (),
we can make the correspondences y = f{x) and x = f~ ! (). Substituting this into

our solution we obtain ( f "1) (y)= , the traditional formula for the

-1
)
derivative of an inverse function.

For a more precise argument, recall how the inverse of a function is defined.

For again, having the definition gives us something to work with. Given a
function y = f{x), when it exists, its inverse satisfies f~ (f(x)) = x. Observe that
this is a composition, or chain, of two functions. Hence, the chain rule applies! We
therefore obtain ’

(7)) =x=1
(Y (@) () =1

Solving for the derivative of the inverse function gives

1y — 1
¢ ) = s

Since y = f{x) and x =f~1 (), we obtain
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1
(')
Example 2.10. Let y = f{x) = sin x, the sine of an angle x, where in the presént
case we assume that the angle is given in radians. The inverse function on the
other hand, starts with a sine (a ratio) and provides an angle (an arc length along

the unit circle — remember, the angle is in radians) that would produce that ratio. In
traditional notation, x = arcsin y = f~! (y).

ryom=

As an angle changes, the sine of the angle charges, hence there is a rate of
change f'(x), which as it happens is the cosine, that is f(x) = (sin x) = cos x. (See
any standard calculus text.) From our result above, we should now be able to

calculate (arcsin y) = (£~ ! (), the derivative of the inverse to the sine function.

« ’ 1
Our formula above is (/! ( y) = ———= . Substituting the sine function, we
o) ()

1 1
f/ (f—l (y)) CcOS (aI'CSin y) '

This is correct, but can we do better? Recall, for any angie Bwhere the inverse
function is defined, we have sin (arcsin ) = 6. If we could only express the
denominator in terms of the sine function, we might be able to further reduce
terms. Recall, however, that (cos x)* + (sin x)? = 1. For definiteness, let’s take the
positive square root, to see what we get, that is, take cosx = ,/ 1- (sinx)2 . Using
this in our formula for the derivative of the inverse sine function, we get
1 | 1

T G0) R e —

get (arcsin y) = ( f "1), (»)=

(arcsin y) = (1) (»)=

|

= 1 — .
JI-DF V15

1
In other words, (arcsin y) = .

In the above calculation, we took a positive square root. Taking positive or
negative square roots corresponds to the different quadrants of the unit circle. As
the reader may verify, completely similar results are obtained in these different cases.

The Fundamental “Theorem” of Calculus

Suppose that yet another property is being tilled for market gardening. This time,
the northern border follows a stream that meanders in a north-east direction.
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The farmer ploughs in furrows that run north and south, on each pass extending
the eastern border with a roto-tiller that gives a 1 foot wide cut. See Fig. 2.11.

East

Figure 2.11

Starting at the point where the eastern border is 200 feet in length, what is the
added area after one pass?

Now, suppose that y = f{x), and repi'esent its graph as in Fig. 2.12.
Let A(x) be the area under the graph. What is the derivative A’(x) of the area?

Clue: Starting at x where the “eastern” border is f{x) feet in length, what is the
added area after increasing x by Ax? In other words, the change in area A4 = f(x)

. dA
Ax. Now look at the ratio % ; and hence obtain that e f(x):

YA

S

)

Ax .
Figure 2.12

Key Insight 24. (The Fundamental “Theorem” of Calculils). The rate of
change of area is the length of the advancing front line.
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Example 2.11. Consider the function A(x) that is area under the graph given by
the function f{) = £, for 1 < ¢ < x. Make a diagram. What is the rate at which area
is swept out, as we move the front-line in the direction of the positive x axis?
Answer: For each x, the length of the front-line is y = x2. Therefore, by the key

insight, the rate of change of the area is given by % = f(x)=x".

Example 2.12. Consider the function 4(x) that represents area under the graph
of the function f(¢)= tl =2, for 1 < t< x. Make a diagram. What is the rate at

which area is swept out, as we move the front-line in the direction of the positive
x axis? Answer: For each x, the length of the front-line is y = x~ 2. Therefore, the

rate of change of the area is given by % =f (x) =x"2,

Example 2.13. (Tangent Lines) For this example we will use calculus to study
Galileo’s formula for free-fall. Galileo’s discovery is called The Law of Falling
Bodies, and states that the distance an object falls is proportional to the square of
time. Using the modern units of s for feet and ¢ for seconds, the result is s = 16¢%.

In the discussion earlier in the chapter, we first focused on the calculation of
average speed, or average rate. We then obtained the result that the exact speed at
t=1t is 16{[24,]} = 324,

Free-fall can be thought of as a single process, and can be imagined as
a continuum. Therefore, a natural way to represent this unity is by a single
graph of s = 16 on time and distance axes. The graph of s = 167 is then a
parabola.

Exercise 2.19. Looking back to the discussion earlier in the chapter, use geometry
to represent the quantities referred to in the various questions on Galileo’s Law.

For instance, for the time interval ¢ = 2 to # = 2 + At the average speed

16(2 + Ar)* —16(2)°
At
(2, 64) to ((2 + AD), 16(2 + AD?).
To enhance your diagram, extend each such line segment to a line segment that
extends the length of most of your diagram. Notice that the smaller At is, the

closer the line is to being a tangent line at the point (2, 64). But, we have already
determined that the exact speed at (2, 64) is obtained from the ratios

16(2 + Ar)’ —16(2)
At

can be represented by the slope of the line segment joining

. See Fig, 2.13.

Discovering Calculus 73

sA

s=164

~Y

/2 2+At 2+At
Figure 2.13

Therefore, we reach another key insight.

-Key Insight 2.5. In geometry, the derivative or exact rate can be represented
as the slope of the tangent line.

Exercise 2.20. Explore this 1dea with the graph of the formula y="1. Repeat the
calculations just described for s = 16¢%.

Exercise 2.21. Using geometry, one might think of slope of a tangent line to a
graph as being equivalent to derivative of the underlying formula. Note, however,
that there are two essential terms in the phrase “slope of the tangent line”, That is,

. “slope”; and 2. “tangent line”.

1. In a (¢, y) coordinate plane, the slope of a line is defined as %€ Can you
run

think of what kind of line might not have a slope? Clue: What kind of ratio is
not defined?

2. Can you think of what kind of shape or geometric figure might not have a
tangent line?

Re. 1, Ex. 2.21. A vertical line relative to (¢, y) has no slope, for as defined slope

rise _ rise

run

axes, the graph is a horizontal parabola. Looking at the graph, what is the direction
of the tangent line at (0, 0)? Now, use approximations to try calculate the derivative

(0+ As)"? — 012
As

would then be of the form —— . Consider the formula of y? =z. Relative to (z, )

= {2, What is happening to the ratios as At gets small.

y

In other words, while the parabola y? = ¢ has a perfectly good tangent line at the
origin, the derivative y = £ does not exist at that point. Evidently, this is not
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because there is no tangent line, but simply because relative to the (z, y) axes, the
tangent line at the origin is vertical.

Re. 2, Exercise 2.21. From diagrams, notice that at every point along a smooth
curve we can draw in a tangent line. Consider instead a curve that has no breaks,
but is not smooth. For example, look at the point (0, 0) on the graph of the
function y = | ¢]. There is a corner at (0, 0). There are many lines that touch the
graph at (0, 0) but these are not tangent, at least not in both positive and negative

|0+ At|—|0|
4

t directions at the same time. Now try to calculate the ratios . For

At > 0, the ratio is equal to 1. For Ar < 0 we get the ratio is — 1. In other words,
these two values are the slopes of the two lines that make up the two parts of the
graph of the absolute value function.

Summary of Exercise 2.21. In some situations, the derivative can be thought
of as the slope of the tangent line. For this interpretation, however, there needs to
be a tangent line; and there needs to be a slope relative to the coordinate lines.
Hence, the identification can break down when the tangent line exists, but is vertical
relative to the given coordinate lines or when there simply is no tangent line. Examples
that do not have a tangent line are easily generated by using graphs that have
corners, such as the absolute value function, or any saw-tooth graph.

We will not go further into these issues, for that would take us beyond the
introductory purpose of these notes.

Example 2.14. Imagine a vigorous tropical vine that grows in such a way that
each day each branch produces two new branches. Draw a picture for this. Suppose
that at the end of the first day there are two branches; at the end of the second day,
each of these branches has produced two more, giving a new total of 4 branches;
at the end of the third day each frond from the previous day has produced two
branches, so there are then 8 branches at the end of the third day; and so on. In
other words, after x days, the number of fronds is given by f{x) = 2*. Clearly, the
increase in the number of branches per day increases rapidly and, on a daily basis,
is twice the number that is present at the beginning of a given day.

As we discussed earlier, to obtain the exact rate of change at a given time x, we

x+ Ax X
. e . -2
suppose a small difference in time Ax, and look to ratios of the form

_Z (2Ax _ 1)=2" (2A" —1). Since 2° = 1, the factor (2A" _l)= (2A" —20) is the
Ax Ax .

approximate rate at which the number of fronds grows near the beginning of the
growth process (starting at time x = 0).
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Thanks to the geometric interpretation of derivative as slope of a graph, the

(~-1) (~-2") .
ratios A = Ax can be seen to approximate the slope of the graph of

x+Ax __ o

the exponential function f{x) = 2 at x = 0. Consequently, the quantity S va—

pl | 24 1
C = ( )= 27 ( Ax ) which approximates the slope of the graph y = 2" at

Ax
x, can also be seen to approximate 2* « (Slop of 27 at x = 0). This leads to the
formula (2%) = 2% « (Slop of 2 at x = 0).

We may easily develop other examples. For example, if we have another type of
vine that, say, triples the number of branches by the end of each day, then arguing
in the same way, we would obtain (3%) = 3* « (Slop of 3* at x = 0). And so on. That
is, for any exponential function, (a¢*) = " « (Slop of a* at x = 0).

Exercise 2.22. Graph the functions Ax) =a" fora=-3,-2,-1,0, 1,2, 3.
Notice (i) All of these functions go through the point (0, 1); (ii) Each has its own
slope at (0, 1); and (iii) For the negative bases, the exponential function rapidly
drops off toward zero, while for the positive bases, the exponential function rapidly
increases.

The basic result for growth rates of exponential functions is that the rate of
change of any exponential function is proportional to the function value itself. If
the function is given by powers of 2 (doubling), then the exact growth rate at time .
x is proportional to 2*. If the function is given by powers of 3 (tripling), then the
exact growth rate at time x is proportional to 3*. And so on. As we saw earlier, this
is quite different in behavior from functions that are powers of y = x". For instance,
if y= x>, then y’ = 3x%. Since the exponent on the variable has been reduced by 1,
the derivative function y’ = 3x? clearly is not proportional to the original function
y= x°. In other words, there is no constant K say, such that y’ = Ky. Indeed, for

x#0, 2 =% , which is not constant in x.
y

Now, the “standard” exponential function is defined by the base that produces
a proportionality factor that is unity. This “natural base” is denoted by the symbol
e, and so we have that (¢)’ = & « (Slope of € at x = 0) = €*(1) = &". Since this base
is “natural”, the inverse of this exponential function is given its own name. It is
called the natural logarithm, and is denoted, not log, (), but simply In (y), and is
pronounced “lon”(y).

Exercise 2.23. Using the rule that we developed for the derivative of an inverse

/. 1
function, calculate (In y). Answer: (ln y) = ; .
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Notes 2.2. Leibniz followed the work of Kepler and Archimedes in his initial

approach to calculating areas. He introduced the elongated “S” notation, J- f (x) dx .

This was to indicate that an area under a graph could be approximated by sums of
narrow columns, with height given by f{x) and width dx. Using the notation of
Leibniz, the Fundamental “Theorem” of Calculus from the last example was written

% [ j f(x) dx] = f(x). James Gregory (1638 — 1675) was the first to publish a

(geometric) argument for the Fundamental “Theorem” of Calculus. Isaac Barrow
(1630 — 1677) also gave an argument for the result, based on moving areas and
tangent lines. These arguments made use of Euclidean geometry, and consequently
involved certain logical oversights. Archimedes, Kepler, Leibniz, Newton and many
others all had, insight into how to use increasingly improved approximations to
evaluate rates and areas. In modern terminology, this type of approximation is
called “evaluating the limit”.

Newton’s interest included rates for physics and geometry, especially those
involving distance and time. In physics, the derivative of position with respect to
time is velocity, and the rate at which the velocity changes is called acceleration. If
one represents a function geometrically by its graph, then the derivative is the
slope of a tangent line. For the Fundamental “Theorem” of Calculus, we put the
word “Theorem” in quotes because, while the initial result was known to Leibniz,

and Newton (the parents of calculus!) as well as others, there were not yet definitions _

of either “limit” or “area”. There was, therefore, not yet a “theorem” as such.
Lacking rigor and proof also meant that initial insights were both incomplete and
vulnerable. It was several decades before mathematicians began to.reach some
initial clarification on the meanings of limit, convergence and area. Maclaurin (1698
— 1746) gave an argument for the Fundamental “Theorem” of Calculus, that was
in keeping with the discussion above, based on areas associated with the graph of
a function. J. D’ Alembert (1717 — 1783) said that “the differentiation of equations
consists simply in finding the limits of the ratios of finite differences of the two
variables of the equation.” [Burton, Sec. 8.4]. Note, however, that D’Alembert
also did not have a definition of “limit”. A. L. Cauchy (1789 — 1857) was, it seems,
the first to formulate a precise and usable definition of convergence [Katz, Ch.
16], a definition that in essence has survived to the present day. It is a testimony to
the genius of Archimedes that in its basic structure, his argument for the quadrature
of the parabola was identical to the abstract definition reached by Cauchy. In fact,
there were definitions of “limit” prior to Cauchy, obtained for example by both B.
Bolzano and J.A. da Cunha (1744 — 1787). These definitions were similar in concept
to Cauchy’s definition. Their work however was not as crystallized as Cauchy’s,
and did not reach the western European mathematics community for several decades
[Katz, 712]. Section 2.3 below gives examples that lead up to Cauchy’s definition
of limit.
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2.3 SERIES, POWER SERIES AND CONVERGENCE

Recall from Section (2.1) our first topic that in approximating the area under a
parabola, Archimedes had a formula for the sum of powers of 1/'5:

14 1 +...+(l)n=i_ 1
4 4 3 3.4"

1
Archimedes argued that since for large values of #, the term WL gets very

small, the sum must approach a target value_: of % See also [Bressoud, 11]. He

concluded with a formula for the area under a parabola.

A sum of powers of a common ratio is called a “geometric series”. These ha\fe
been useful throughout the development of mathematics. An approach to geometric
series that would be in keeping with modern mathematics would be to use algebraic
techniques. Let’s keep to a numerical case for now, a ratio of 10 say. The problem,
then, is to use algebra to find a formula for a sum of powers of 10.

Question 2.4. What is the sum 1 + (10) + -+ + (10)* =?

Here are a few cases: '
Forn=1,wegetl+(10)=11

For n =2, we get 1 + (10) + (10)? = 111

For n =3, we get 1 + (10) + (10) + (10)* = 1111

And so on. '

Evidently, these sums get large as we add higher powers of 10. It is probably

. 1
not surprising that there is no target value as there was when the ratio was 1 The

- pattern, though, is interesting and we can still try to find a formula for the sum.

The algebraic approach is to give the unknown a name, and then to investigate
patterns of operations. Now, simply naming the unknown (e.g., calling it S) may at
first glance seem like a fairly useless thing to do. But, using this algebraic approach
does not merely give the unknown a name. Doing so, we identify that the unknown
S is a number. Because of that, the unknown is then connected to all other numbers
through the patterns of arithmetic operations. Making this explicit gives a tremendous
advantage toward identifying the number in question.

In the present case, the unknown is “S” — for “sum”. This gives us the equation
S=1+(10) + - + (10)". Having this equation now reveals significant arithmetic
features. The sum is constructed out of powers (multiplications) of a common



78 Pathways to Real Analysis

ratio, so one idea is to look at how our unknown S might be affected when multiplied
by that common ratio 10. This, in fact, gives us two equations to compare:
’ S=1+(10)+ ---+(10)"
10« §=(10) + --- + (10)" + (10)* * !
The unknown can now be isolated, for by combining these two equations we
get '
(10-1)+S=-1+(10)"*!

10 n+l’_1
That is, (9) » S =— 1+ (10)"*!; and so S=(—)9—

Exercise 2.24. Was there anything in this approach that depended on the particular
value of 10? Use the same approach to find a formula for the general geometric

+1
. x'T =1
series S=1+x+ --- +x". Answer: S=1+x+--+x" =W .
x—
This is an algebraic expression. There may need to be restrlctlons on the values
of x for which the expression makes sense.

Typically, restrictions on the use of symbols are needed in any language. To
review how that need arises in algebra, first consider the more elementary venue

of arithmetic. The fraction 13% poses a question: How many 3’s does it take to

make 127 Of course, the solution is 4, because 4 x 3 = 12. What about the fraction

% ? This fraction would also pose a question: How many 0°s does it take to make

a 12? Of course, you can’t make a 12 from 0’s!

The difficulty here is not a problem with the rules of arithmetic, but a problem
with the question. The question doesn’t make sense. Traditionally, division by zero
is therefore called “undefined” — again, meaning that in this case the question
doesn’t make sense.

For an illustration of what can happen if we don’t make sure that the operations
are defined, consider the equality 0 « 1 =0 « 0. If we symbolically divide by 0, we
get that 0 = 1, from which it easily follows that all numbers are equal to 1, or
equivalently, all numbers are equal to 0!

Returning now to algebra, note that an algebraic expression regards ‘many
instances of arithmetic. Consequently, in algebra as well, there is always the
background question, “For what values of the variable(s) does the expression

3

.Xx
make sense?” As an example, for what values of x does the expression 1
x —_—
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make sense? There is only one case where there would be a problem, that_ is,
where the denominator would become zero. Consequently, the expression 1s a
valid algebraic expression, as longasx# 1.

n+l

Now, let’s return to our geometric series S=1+x+-- +x" = FI—)_ For

what values of x does this expression make sense? Evidently, the expre.ssion isa
valid algebraic expression, as long as x # 1. This expression then is valid for any
other value of x. In particular, we can retrieve the examples that we have already

discussed in this chapter: ;
n+l X n+l
GG,
2.
- 1——
) (-3)
n+l n+1
(YT [t
(1) _\4 o \4 _4 1
4) (1 - 1) 3 34"
- _ 1—-=
) (-3

10" -1 10" -1
For x = 10, we get 1+10+---+10" = (10_1) ==

1 - 1
For x = E’\Vegetl.|.(5).{-....i.

1 1
Forx= Z,wegetl+(z)+...+

For the first two examples x=—;x= :11- . As already discussed, there are target

Nl'—-

values of 2 and ad respectively. That is, the more terms we have in each sum, the
3 : ’

closer the sum gets to its target value, To express this insight, it would be useful to
have a symbolism. The symbol traditionally used is *---”.
For instance, instead of writing out the entire algebraic expression

n+l n+l
1+ 1 $eeet 1y _\2 = =2—-— andthencommentmg
2 2 (1 ) ( 1) 2"
—1 1——
2 2

on how and why the sum approaches its target value, we may abbreviate this by

2 3

: . 1 1 1
writi De(L] 4[2) +.=2.

tmgl+(2)+(2] (2)
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The notation has lead to the name “infinite sum”. Notice, though, that the
symbolism does not regard any “infinite sum” as such. One may think of as many
terms as one pleases. But, the essential and primary meaning of the symbolism
doés regard an “infinity” of terms, but expresses an insight. Just as first discovered
by Archimedes, the insight is that the (finite) sums approach a target value, because

the additional part (the remainder) ZL” in the algebraic formula 2 — Eln_ gets small

as we increase the number of terms #.

In this context, we now have a new symbol, “---”. Just as for fractions in
arithmetic, rational expressions in algebra, and symbols in any language, we can
enquire into valid use of the symbol “.--”. When does use of this symbol make
sense?

For geometric series, we can answer this fairly directly, for we already have an

.. . . . X"t -1
explicit expression for the finite geometric sums: S=1+x+---+x"==>——

G

As already discussed, for the rational part on the right hand side to make sense,
we need only require that x # 1. Then, to use the symbol “---” requires that the
quantity approaches a target value. Evidently, if | x| < 1, both criteria are met and

A | . . .
the target value is 1—— . To summarize these results, we can write the abbreviated
-Xx

1
=

Exercise 2.25. Are there values of x for which the finite sums §=1+ (5x) + - +

expression 1+ x+x% +...= ,for|x|<1.

o (Sx)n+l —I
S o

y=5x. Answer: We can write S= 1 + (5x) + (5x)* + . -, for | y| <1 or equivalently

approach a target value? Clue: Write the sum in terms of

for |x| < -1—
5

Example 2.15. Where Archimedes enquired into the area between a parabola
and a line, Gregory of St. Vincent (1584 — 1667) enquired into areas between an

hyperbola such as y= 1 and the line given by the x-axis [Katz, Ch. 12].
x

-Before looking at Gregory’s results, it may help to recall a fact about the areas
of rectangles. Suppose a rectangle of height 2 and length 1, hence of area 2. If we

then the new rectangle will of course have the same area, namely, 3 X =
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reduce the height by a factor of % , but increase the length by a factor of 5,
R

1 .
Now, to estimate the area under the hyperbola y = r we can easily produce a

lower estimate by using rectangles of width 1, and heights determined by the
hyperbola itself. See Fig. 2.14.

*
YA

. Figure 2.14

If, for example, we wish to look at the rectangular area under the hyperbola
with length determined by the end points 1 and 4, then a lower estimate to the area

1 1 S ‘
is given by the sum of rectangular areas % + 3 + 7 (Note that likewise, an upper

1 1
bound is given by 1+5+§ J)

As we just observed, we can form new rectangles of the same area, as long as
the height and length keep the same ratio. But, the formula for the hyperbola does
just that, that is, it reduces height inversely to any increase in length. See Fig. 2.15.

' . . 1
Start with the rectangle whose end points are x = 1 and x = 2, with height 5

determined by the right end point x = 2. If we look now to a new rectangle
obtained by doubling the coordinates, and using the hyperbola for getting the new

height, we get the rectangle x =2 and x =4 and height % . This can be repeated.

. 1
" For the next case, we get a rectangle with end points x =4 and x = 8 and height r

And so on.
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YA

1/2

s

Figure 2.15
Exercise 2.26. Evaluate what happens if the initial rectangle has end points

x=1 and x = 4, with height % , and instead of doubling, we use a factor of 5 say.

The end points are x = 5 and x = 20 and the new height is % . Evidently, the area

is again preserved. L
For the general case, suppose we start with a rectangle with end points [a, b]
1 b-a

and height 217- . The area is (b - a) 5 = 5 Now, multiply the end points by any‘

common factor ¢> 0 to obtain the new end points [oa, ab]. Using the hyperbola

over the right end point, the new height is —% . So, we get a rectangle of length
o

—a L ..
, which is equal to the original area.

a (b — a) and height L , hence area
ab

Gregory of Vincent realized that this must also be true not only for rectangles
sitting under the hyperbola, but for any area under the hyperbola [Katz, Ch. 12].
That is, he showed that given end points [a, b] and positive number ¢, the
rectangular area under the hyperbola for [a, b] is equal to the rectangular area

under the hyperbola for [oa, ab]. To establish that result, he used what was by -

then a classical approach of approximation. He partitioned the interval into many
subintervals, and approximated using rectangles with height determined by the

formula y= 1 . His argument then showed that since the ratio property holds for
x
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each of the many thin rectangles, it holds for their approximating sum, and therefore
the property also holds for the actual hyperbolic area.

Reading the work of Gregory of St. Vincent, A.A. de Sarasa (1618 — 1667)
realized a connection to the logarithm functions [Katz, Ch. 12]. To see this, let’s
start with an example. Let A(1, 15) denote the area under the hyperbola, between
the end points x = 1, x = 15. See Fig. 2.16.

A

1 a af

Figure 2.16

From basic geometry, A(1, 15) = A(1, 3) + A(3, 15). But the end points of the
second interval have a common factor of “3” and so the interval can written as
(3, 15) = (3(1), 3(5)). We can therefore use the result of Gregory of St. Vincent.
That is, the second term can be reduced to A(3, 15) = A(1, 5). Putting this back
into the equation, we get A(1, 3 + 5) = A(1, 3) + A(1, 5). In other words, for a
product, we can pull back the area to a sum of two areas, both starting with the
same left end point x = 1.

Exercise 2.27. Using the result from Gregory of St. Vincent, show that for any
positive a, S, A(l, ﬂ)= A(a Lo ,B)= A(a, 0{,3); from which it follows that

A(l, aﬂ) = A(l, a) + A(a, a,B) = A(l, a) + A(l, ﬂ) . Or, streamlining the notation

somewhat A(af)=A(1, &)+ A(L, B) . In other words, the area under the hyperbola

behaves just like a logarithm function! [Recall that logarithms (exponents) add
under multiplication: For any base B, B'B® = B* 7]

Having read the work of 4.4. de Sarasa that related area under a hyperbola to a
logarithm, N. Mercator (1620 — 1687) used some results from J. Wallis (1616 —
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1703) on ratios of “infinite sums”, and obtained a formula for a shifted logarithm
2 .3
x
log (l+x)=x—7+x3-——--- [Katz, pp. 491 — 492].

In fact, Newton derived the same formula, by first obtaining a series for 1
1+x°

Observe that b ivision, ——= 2 X i
at by long division, i I-x+x" - i+_x; and by repeating long
division, this pattern can easily be continued. For example, in exactly the same

. 1 x*
way, we can obtam 1—— =l-x+x*-x+ _1+—x . And so on. Or, one can observe

+Xx
that———1 =——. Using the geomgtri ies, .
Tox 10 (—x)' sing the geometric series, we get that 1 + (~x) + (— x)? +
_(_ n-i;l 1
"'+(—.?C)n= 1 ( x) =1—(—x)"+ |

1—(—x) 1+x

- 1- (_x)n +1
| I+x
Newton’s general binomial theorem (a summation formula for (a + b)%, anot

In oth - 2_ ... i
erwords, |- x+x" —x +(—x) . In fact, there is also

necessarily an integer). For &= - 1, his formula produces L = (1 + x)_1 =1-
I+x

x+x2 -+ e,

Newton made use of the result that the area under the hyperbola y = L is
1+x

log (1 + x). But, he also had a version of the Fundamental Theorem of Calculus
and so he .could interpret the area under the hyperbola as an anti-derivative. Hej
therefore integrated the summation term by term'and produced the equation
3
X X .
log (1 + x) =X 3 + 3 He used this formula “to calculate the logarithms of

many small positive integers” [Katz, 508].

. ‘ 2
- Example 2.16. Consider the expression log (1 + x) =x-2_ 4 x_3 —Ifx=1
T2 03 '

b

the left side log(1 + 1) = log(2) is defined. For the right hand side,
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. Does this series converge to some target value?

See Fig. 2.17.

+1

™ x__~ )

N - 1/4

]

-1
Figure 2.17

The sums 1- % + % —eet(=1) 11 e evidently trapped inside increasingly

n
narrow segments of the unit interval. It would seem, therefore, that there must be
a target value, greater than % and less than 1. This is not a proof, but it is at least

a good clue. A proof would require a definition of convergence, and something
equivalent to completeness of the real numbers. The calculations, though, can be
directed by the (casual) geometric insight. Supposing now that for x = 1 both sides
of the equation make sense, there is still the question of whether or not they
L .
represent equal quantities: Is it true that log (2) =1- > + 37 ? We will look to

this question again later in this chapter.

Example 2.17. The previous example shows that for the formula

2 3
=4 _’;_ — ..+, setting x = 1 produces a possible target value, something greater

2
than % and less than 1. Tt is also interesting to look closely at the other extreme

case, x =— 1. Of course, the left hand side of the equation is simply not defined for
x =— 1, because there is no logarithm (exponent) that produces 0. The right hand
side though implicitly refers to finite sums of the form

2 3 n
-1 -1 -1 :
(—1)——(—2—+(——)——---+ ( ) =— 1+l+l+---+l . So, the existence of
2 3 n 2 3 n
a target value for the right hand side of the equation will depend on the existence of

a target value for sums of the form 1+%+%+--~+l.
, n
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While not a proof, one way to see that this cannot approach any target value is
use the strategy of Gregory of St. Vincent. That is, assume that the area under the

' 1. .
hyperbola y =; is a logarithm for some base B > 1. See. Fig, 2.18.

Figure 2.18
Let A(1, n) be the area under the hyperbola from x = 1 to x = 7 with n = @A
1 1 1
Then 1+5+ §+ st E> A(l, n)= log2” = plog2. As n increases, so does

the exponent P that is needed to produce n = 2P, The result follows.

Ar.lother approach uses an elementary fact already mentioned. See F igure 2.19,
Consider the rectangle with end left point x = 1, and height determined by the right

end point x = 2. The area of the rectangle is % x1= % - But, if we reduce the height

1 . o
by a factor of 3 and increase its width by a factor of 2, we get a new

Figure 2.19

1 . )
rectangle also of area 5 This new rectangle though can be represented within the

graph of the hyperbola. It will have left end point x = 2 and right end point x = 4;
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and by looking also at rectangles of unit width in the diagram, it is evident that

1 + % > —12— . This can be repeated. Shift the rectangle with left end point x = 2 and

3
right end point x = 4 along to a rectangle with left end point x = 4 and right end

point x = 8, of height % . This rectangular area sits under the lower rectangles of

the hyperbola, and we therefore get % + -é— + % + é > % . And so on. To be careful

about this we need only formulate the result algebraically. We can partition the sum
1 1 1 1 1 1 21

2_k+§k_+1+.'"+ Hk+1 > o+ +2k+1 +"'+2k+1 TR T

So, by using powers of 2 to partition the sum, we can choose large values of

the form »n = 27, so that the sum 1+ % + —31— oot 1 is larger than accumulating
n

multiples of % . Multiples of % grow without bound, and consequently there can

be no target value for sums of the form 1+%+§+--~+l.
n

By the end of the 17 century, many summation formulas were being discovered,
through techniques based on combinations of geometry, algebra, differentiation
and integration.

BS BS B7

Other examples are: arcsin B=B+—+ T+ <+, which inmédern
6R” 40R" 112R
' 35
terminology (circle radius R = 1) gives acrcsin x=x+ 3 + 0 + T +--.. There

were also sums for arctan x and tan x. It is also possible that James Gregory (1625 —
1683) was aware of a formula that later was named in honor Brook Taylor (1685 —
1731), namely, the “Taylor series expansion”

£70) 2, S7(0) 5

f(x)=f(0)+f,(0)x+ Y X+ 3 X4

(published in Taylor’s book The Method of Increments, 1715.)

Newton independently discovered many summation formulas. It is interesting
to note that summations for arctan x, sin x and cos x also appeared in Indian works
as early as the 14" century [Katz, 494].
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Early derivations of series formulas made casual use of the symbol “---” (or
some equivalent). In order to identify the extent to which the results were legitimate,
one would of course need to investigate those values of x for which the equations
and the summations make sense, both algebraically and as short hand when there
is a target value. In other words, as is implicit in the approach taken by Archimedes,

one would need to determine not only those values of x for which both sides of an

equation are defined, but also those values of x for which, as we add more terms
to a summation, a target value emerges because the remainder term gets small.
Note a further subtly: Newton integrated (and differentiated) series term by term,
and in doing so assumed not only the validity of the symbol “---” in the equations
that he started with, but that the result on the summation side of an integrated (or
differentiated) equation was the same as the result on the algebraic side of an
integrated (or differentiated) equation. These issues were not well understood, and
free use of the symbolism frequently led to erroneous results.

. . . 1
For example, if we use the geometric series 1+ x+x% +.--=—_ and do

=)
1

‘not restrict x, we can get such things as- 1+ 2+ 4+8...= (—l——z) =—1. Of course
this doesn’t make any sense. To account for the difﬁculty, note that in the present
case, the full expression that includes the remainder termis 1 +2 +4 + 8 -.. + 2"

n+1

2-1

the exponent » increases. Consequently, in this geometric series, we cannot make
valid use of the symbol “...”.

. Clearly, the additional term 2" * ! does not decrease in magnitude as

This brings us finally to a key question in the development of calculus.
Question 2.5. How do we define convergence?

As Cauchy did [Bressoud, 191, let’s take the lead from Archimedes, who always
worked with finite sums. The written work of Archimedes though can be difficult
to read, because every quantity is represented as some geometric distance, denoted
by a pair of points on the plane. This makes for rather complex looking pages of
mathematics. (See, for example, [Heath].) We have the modern advantage of having
efficient symbolism. '

1 n+1
: . 1) (1Y I (E) -1
Consider then the geometric series 1+ 3 +H = | = | =Y.
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As may now be familiar to the reader, this reduces to

2 n
1 1 1 1
- 2] v =] =2——.
1+(2)+(2) (2) 7

Observe that for each 7, the sum is less than 2. A further insight is that tl.le §hon
fall to 2 decreases as we add more terms (as » increases). Thi§ i‘s the preliminary
and basic insight. This insight is not a proof, it is not a deﬁnlthn, and does not
regard some “infinity” of terms. Instead, we catch on to a pattern in the sums, and
that pattern is that as we add more terms, the sums get closer and closer to 2.

g . . .1 .
Can we be more precise? The short fall (or remainder) is the quantity o This

quantity obviously gets small, that is, gets close to zero. But, how close? Can we
be more precise in our meaning of “close to zero™?

’ 1
If, for example, we have a sequence of terms .01+1, ,01+5,.01+Z,

01+-1— then these terms also get increasingly close to zero. But, there is
. P

certainly a difference between the way in which the sequence of terms
1+1,.1+ 1 1+ 1 A+ 1 ... gets closer to zero, as opposed to the way in which
. A 2 2 8 2

, %, ... gets closer to zero.

P

2

1
the sequence 1, 5

The sequence .01+1,.01+ %, 01+ %, 01+ %, ... never gets below 0.01 > 0! It

- can be said in facf that the sequence is “bounded below”, by 0.01 > 0. On the other

hand, the sequence 1 v —ln— would seem to be able to eventually by-pass

’E’Z,_S_’.

,—217 that is

2

1
0.01 > 0. Does it? Is there some member of the sequence 1, 3

11

2 b 4 b
smaller than 0.01?

, i _ v

Let’s see. Can we find an » such that o < 0.01? To find a solution, we need an

log0.01
—log2

exponent 7. Solving for n, we get —nlog2 <log0.01,and so n > . But, this

. 1
fraction is approximately equal to 3.33. So, aslong asn> 4, we will have Y <0.01.
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o 1) (1Y 1Y 1
We can now return to our geometric series 1+ ) + 0 L 3 =2—-—.

As long as n > 4, the short fall to 2 will necessarily be less than 0.01. Now,
thinking of the approach we just took, was there anything special about 0.01 > 0?

Would the same type of argument be possible to show that ?ln— eventually by-

passes, say, 0.000001? Or other small numbers?

Exercise 2.27. Use the same approach as above to find out how large » needs

to be so that the terms 2% eventually by-pass, say, 0.000001.

A key then is 'to be able to accurately quantify the meaning of “gets close”. If
something is said to get close to zero, then we can ask, “How close?” Cauchy’s
words are “less than any assignable” number [Katz, 712]. In the above calculations,
we used the assigned number 0.01; and there was also the exercise to try the same
thing with the assigned number 0.000001.

Strategic symbols can often better express an idea than wordy phrases. Instead
of saying “any assignable number”, let’s give an “assigned number” a name.
Following tradition, let’s call this assigned number £> 0. (In some applications,

one thinks of “£” as “error” from the target value.) To say that the terms ZL" get

closer and closer to 0 (or that the terms “converge” to 0) we need to be able to

show that given any assignable number £ > 0, the terms 2% eventually by-pass

£> 0 and get even smaller.

For the sequence 2i" , can this always he done? Suppose that £> 0 is some

small positive number, smaller than 1, so 1 > £> 0 Can we show that the terms

2i" eventually get smaller than £> 0. In other words, in the present case, can we
find » that solves the inequality 2% <e?
loge

—log2
we are supposing that £> 0 is a fixed small positive number 1 > £> 0. So, while

Solving for the exponent, —nlog2 <loge, andso n > . Remember that
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the right hand side kl)g 82 may not-be an integer, it is a ratio of two negative

1 . .
numbers, and so is some positive number. Now, our sequence o is easily shown

>-.. Therefore, as soon as

. .1
to be a decreasing sequence, that is, o > Y > Py

we choose some exponent »n > l?g gg , the rest of the terms of the sequence will
—_— Og -

also be smaller than 21—n <E.

Abstracting the essentials of this argument leads to the following definition:

Definition of a Remainder Converging to Zero: A sequence of positive
remainders 7y, 7,, 73, ... converges to 0, if given any assignable number £> 0, the
terms eventually get closer to 0 than £> 0. In other words, given any £> 0, it is
always possible to find n, so that forn 2 ny, 0<r, <&

Exercise 2.28. Extend this to define convergence of a sequence a;, a,, a3, ...
of (not necessarily positive) numbers to a target value (also called limit) a. Clue:

Consider the sequence Ir,, |= | a-a, |2 0, determined by the absolute value of-
each remainder.

1 1 1
Exercise 2.29. Use the definition to show that the sums 1+Z+Ig +—

64
1 4 1 1 4
+.o+—=| —|~-| — || = | converge to —.
¥ (3) (4)(3) 03
1 1 1

Exercise 2.30. (Integral Test) Consider the sums S, =1+ > + 7 + el

+ Lz . Do these sums converge to a target value?
n

h f the fi 1+l+l+l+---+landl+l+l+---+— can
Recall the sums of the form S t313 . >¥37% n

1
be obtained as upper and lower bounds for the area under a hyperbola y = = We

were able to show that these sums do not converge, but rather produce increasingly
large positive numbers.
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We gathered insight into this problem by relating the sums to areas under a

. 1 : :
known function y =; . We then used information about the function y= 1 to
x

deduce features of the sums.

1 1 1 1.

Can something similar work for the sums S, =14 —= + — + — 4.+ —9
n 22 32 42 n2 ’

) . 1
Clue: Use the function y= =z Look at rectangular areas under the graph of
1 . .
y= =z determined by the intervals [1, 2], [2, 31,13, 4], ..., [1, x]. Recall that if

A(1, x) is the area under the graph of the function y= -1—2 over the interval [1, x],
x

then by the Fundamental Theorem of Calculus, the derivative of the area function

. d 1 - '
is a A(l, x) =—=x 2. What then must the area function itself be, as a function of

x

x? If we let n get very large, what happens to the areas A(1, n)? Does this sequence
converge? Relate this result to the sequence of sums S, =1+ % + —17 + iz +oet Lz

22 3% g4 n’

Note that the presence of the first summand “1” of course does not affect possible
convergence.

Exercise 2.31. Think about how the approach of the last example can be
generalized to other functions. In particular, suppose that y=Ax) 20, and (i) =
apfori=1,2,3,...,and §,=a, +a, +a; + - +a, with a; > 0. Based on the last
example, might it be possible to establish a relationship between the sums S, and
integrals of the function y = f{x) > 0? !

Some conditions on the function would though be required. For instance,
1
On—-—<x<n+ l
suppose that y = g(x) 2 0 is defined by g(x) = 4 . In this case,
Ln+—<x<n+=
4 4

i=n
Z f (z) =0, but the integral areas (total areas) under the function clearly do not
i=1

converge.
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The Integral Test therefore requires that the function y = fx) = 0 be monotone
decreasing on the interval 1 < x < oo, In that case, it can be shown (Exercise for the

n
reader) that the sequence J. f (x)dx and the series S, = a; +a, + a3 + - + q,
1

either both converge or both diverge.

1
1.2

Example 2.18. (Comparison Test) Consider the sums of the form S, =1+

+ 1 + 1 Foeedt 1 . Do these sums have a target value?
2¢4 3.8 ne2’

As a first observation, notice that from one sum to the next we add another
positive term. Hence, the sequence of sums S|, is increasing, that is, for each n,
Sn < Sn +1°

Now, do you also see some quantities involved that are familiar? There is the

geometric series G,,=1+%+i—+---+%=2——2};.Foreachnwehave S, <G,
since 11+ < L, Sl; L Lo 1 1
2 1224 4°3.8 8 ne2" 2"

Moreover, as we have already determined, the sums G,, increase and 6onverge
toward their target value of 2.
We can line up what have so far this way: 0 < S, < G, < 2. See also Fig. 2.20.

Vadalre
5. G |

Bounded above by 2

Figure 2.20

The sums S, are therefore both increasing and bounded above. While the sums
increase, they are also trapped. They must therefore, start “crowding”, or
accumulating. So it makes sense to conjecture that there must be some ceiling
value, or target value. In other words, it makes sense to conjecture that the sequence
must therefore converge to some target value 7' < 2.

This conclusion does make “sense”, but we need to be careful here, so that we
don’t make the same kind of oversight that early geometers made, and Cauchy
himself made. One of the oversights in pre-twentieth century Euclidean geometry
was to confuse insight into image (grasp of possibility) with mathematical necessity.
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There was, for example, the assumption that a line joining a point inside a circle to
a point outside a circle necessarily intersects the circle. Certainly, that can be
grasped as a possibility, by insight into a diagram. But, as was discovered in the
19 century, there are geometries that do not have this kind of intersection property.
The need for some kind of “betweeness axiom” was then confirmed.

We need to be careful in a similar way with seqliences of real numbers.

In our case, we have an increasing bounded sequence S,, of what in fact are
fractions. Asserting the existence of a target value is asserting the existence of a
real number 77 that may or may not a fraction, and that is between all of the
fractions S, and 2, that is, S, < T< 2. In other words, we would need that the real
numbers are sufficiently “complete” in order for such a “between value” to
necessarily exist. Note that, in this context, one can also enquire into the existence
of a target value for a 'sequence that is not necessarily increasing and bounded
above, but is at least bounded both above and below. For example, consider the

(—)

sequence S, =2+ -——

To go into these matters further is for a course in advanced calculus or analysis,
where one would investigate the axiomatic development of the real numbers. The
present modest purpose is twofold: (i) To see that having one increasing sequence

bounded above by another convergent sequence can lead to the preliminary idea

that the lower sequence must also be convergent; and (ii) To be aware that the
validity of this result depends on properties of the real numbers that would need
further study.

1 1 1 1

Exercise 2.32. Each of the sums §, = + et
1. 2 2¢4 3.8 ne2"

<2

That is, 2 is a “ceiling” or an “upper bound” for all sums of the form S,

Is there a “lower” ceiling, perhaps some “smaller upper bound”? Notice that

_ 1 1 1 1
S, =1+ + + et
1¢e2 24 3.8 ne2"

< 1 1 1 1 1
< + + + ot
1e2 244 |3.8 3.16 3.2"

13 1 1 1 1 1
= . I+=4+—+—+4-+—

8 3.8 2 4 8 2"
<8, 1

8 3.8
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=4
24
<2
So, there is a “ceiling”, an upper bound for the sums S, that is strictly less than

‘2. What then could the target value be? Could it be 2? Could it be % ? Might it be

less than 41 ? What about a “lowest possible ceiling”, or as it is now called in the
2

textbooks and the literature, a “least upper bound”?

Exercise 2.33. Is a least upper bound unique? Use the approach of Archimedes
to see that the least upper bound must be the target value. Again, notice that we
need a completeness axiom.

Example 2.19. (Cauchy Sequences) Consider two sequences of sums, one
harmonic and the other obtained from squares: As we have already discussed, the

1 1 1 |
sequence of harmonic sums H, =1+ 5 + 3 +Z +:--+— diverges; and the
n

1,1 1
sequence of sums of squares S, =1+ -7 +—= » + el +---+— converges.
n

Use the definition of convergence to show that since the sums of reciprocal

. 1
squares converge to a target value (integral test), the last terms of the sums —

n
must converge to zero. While this is necessary, it is not in general sufficient. Take
. . 1. 11 1 1
for example, the harmonic series H, =1+ 0 + 3 + 1 +:--+—. The last terms -
: n

certainly converge to zero, but the series does not converge. To characterize
convergence of a series, we therefore must look to something more than just the
behavior of the last terms.

In the effort to find a usable test for convergence of a series, Cauchy was led to
formulate a stronger criterion that included not only the behavior of the last terms,
but arbitrary strings of last terms (the “tails” of the series). He asserted that a
sequence (of finite sums) is convergent (according to his definition of convergence)
if for each k and arbitrary n, the differences S, , ;, — S, converge to zero. Later, any
sequence with this property was called a Cauchy sequence.

Exercise 2.34. Use the definition of convergence to show that a Cauchy sequence
must be a convergent sequence. The converse is also true, ..., if we assume
completeness of the real numbers!
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Exercise 2.35. (Absolute Convergence) Consider the sums S, =1- iz + iz
3

42
sequence? Recall that

1 n+1 1 . -
——+-+ (—1) * n_2 - Does this-converge to a target value? Clues: Is it a Cauchy

laliyazl Slall+la2l
[aliazia3| < |a1|+|a2'+|a3|
ETC!

1 1 1 1
For another clue: Is S, =1+ > + 7 + el 4ot ;17 a Cauchy sequence?

Exercise 2.36. (Absolute Convergence of a Series of Non-Negative Terms
Implies Convergence of the Alternating Series) Suppose that S, = a; + a, +a,
teoeta,a 0. Letd,=a ~ay+a;— -+ (= 1)"*! g, be a sequence of sums
obtained by alternating the signs of the summands a;. If S, is a convergent sequence
of sums, does it follow that 4, = a; — a, + a; — - + (- 1)"*!a, also is a
convergent sequence of sums? Clue: See the previous Exercise. Is A,=a;—a,+
a;— - +(=1)y"*! a, a Cauchy sequence? Is S, = a, + a, + ay +:-- +a, a Cauchy
sequence? See also the clues given in the previous exercise.

Exercise 2.37. (A Non-Negative Sequence and its Alternating Series) Earlier
in this Chapter 2 we discussed a series expansion for log (1 +x) and we asked

2 3 n
whether or not the sums 1—Q+Q— ot (-1)° (l—)-=1—1+-1——--~(—l)" 1
. 2 3 n 2 3 n
converge. Is this a Cauchy sequence? Can you generalize this result to an alternating
series? That is, suppose that S, = a; — a, + a3 — -+ + (- 1) *1 4, where the
‘'sequence ai 2 0 is monotone decreasing and converges to zero.

Exercise 2.38. Think about and take note of the differences between the results
of the last two Exercises, both of which regard alternating series.

Example 2.20. (Root Test) Consider the sequence of sums defined by S, =

n

sin(2k . i
2 (k ) . Is this a convergent sequence of sums? Note that M < i
= 2 ‘ 2k 2t

Do you see that there is therefore a geometric series that dominates the sums?

sin(2k)
2k

k
1
( —2-) <1. The absolute values therefore

n

3

=1

Indeed, we get that S, = Z
k=1

converge. It follows that the original series also converges. The general statement

1
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1
of this approach is called the Root Test. In other words, if |ak |F <r<l1, then

n n
S, = Zl a, |S2rk is a convergent series. Convergence of a series depends
k=1 k=1 ' '

only on the behavior of the tail of the series. There is, therefore, a limit form of the

Root Test. See, for example, [Bressoud] 130 — 135.
Example 2.21. (Ratio Test) For the cosine function, the Taylor series is given by
2 4 2n '
x° X i X
thy T(x)=1-—+—+-+(-1) —=
esums 7, (x)=1=Zy+ g+ + () (2n)!

summands are given by increasing powers of x. However, if we try to compare this
directly to some geometric series, evaluating the n™ root of a summand leads to the

. Are these sums convergent? The

2n \p 2 1
challenging calculation [(—1)" —x—}n =~ _x__r . How can we estimate ((2n)!); ?

(Zn)! (Zn)!);

It is a modern and algebraic approach to express a geometric series as a sum of
powers. Instead, one may recall the geometric origin of the geometric series. In

* other words, the series is determined by a common geometric ratio (of lengths).

This of course is quantitatively equivalent, but includes an additional focus, and
gives a different expression. As it happens, it also gives us another way to analyze
series. So, toward being able to compare the Taylor series for the cosine function
to some geometric series, let’s consider the ratios of successive summands. We get

1)n+l xz("“)
Gys _ - Cr+D)
a n X" N (2n+1)(2n)

! (-1) @)

Clearly, the absolute value of this ratio converges to zero (rapidly, for any x),
and so we can easily compare the series to a convergent geometric series. For

example, we can compare to the geometric series with common ratio = % , by

2
Qi1 X i

| ﬁﬁding the values of » for which = (2n+1)(2n)

a
inequality directly, by using a quadratic equation for n. That would be quite exact.

< l One could solve this

n

However, the comparison Dnet _ x <=
’ P 4, (@n+1)(2n) 2

is already only an estimate,
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and there is no need for an exact solution at this stage. A common strategy is to
solve such an inequality on the conservative side. For example, observe that

x2 x? X2 2 1
< <—. So, if we can solve — <—, then that would be
(2n+1)(2n) " (2n)(2n) " n no 2
T x2

l . A solution then is n > 22

enough to guarantee that = (2 n 1) (2 ) < 5
a, n n

As with the Root Test, there is also a limit form of the Ratio Test. See, for
example, [Bressoud] 130-135.

Example 2.22. (Cauchy’s Definition of Integral)

Let’s briefly review some of what we have so far. Going back to the work of
Archimedes and other early mathematicians, the areas of parabolic and other non-
rectangular areas were calculated using approximations by constructions and sums
of more familiar rectangles and triangles. This basic approach has been used up to
the early days of calculus and on to modern times. Intrinsic to this approach is a
basic insight grounding the notion of target value or limiting value. When applied to
ratios this key insight leads to an initial understanding of “exact ratio”, later called
“derivative”. A special case of that understanding is obtained when we seek the
rate of change of a moving area. This led to what later came to be called the
Fundamental Theorem of Calculus.

However, as we have mentioned in the notes above, in its initial 17t century
formulations, the Fundamental Theorem of Calculus was not rigorously established.
In fact, there were main parts of the result that were not yet defined. There was
not yet a definition of convergence; there was no completeness axiom stated
(although some such axiom is needed to ensure the existence of limits); and there
was also no definition of area. Filling these gaps was essential, for otherwise the
Fundamental Theorem of Calculus was a statement about a not-necessarily existent
undefined derivative of a not-necessarily existent undefined integral.

Cauchy first solved the problem of defining convergence. It was then possible
to turn attention back to the integral. Cauchy used his new understanding of
convergence to lift the basic insight that grounds the approximation of areas by
rectangles into the context of explanatory definition. Indeed, “Cauchy made the
approximation into a definition” [Katz, 718]. Note, however, that Cauchy did not
recognize the need for a completeness axiom. An axiomatic formulation of the real
numbers was to be investigated later in the 19" century. See, for example, the

work of Richard Dedekind (1831 to 1916).

Suppose that f{x) is continuous on an interval [x,, X]. Partition the interval into
n— 1 subintervals determined by the intermediate values xo <x, <x, < ... < X, 1
<x,=X. When it exists, the Cauchy integral can then be defined as the target value or
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limit of sums of the form f{xg) (x; — x¢) + fx) (o —x5) + o+« + fAx, _ ) (x,— %, _ )
[Katz, 718 — 719].

The completeness axiom aside, using this definition Cauchy could then easily
prove the first rigorous version of the Fundamental Theorem of Calculus:

X

Suppose that f{x) is continuous on an interval [x,, X]. Let F(x)= j fx)ax.
%
Then the derivative is given by F'(x) = f(x).

Remark 2.1. In fact, later, G.P. Lgjeune-Dirichlet (1805 — 1859) showed that
the Cauchy definition of integral “only guaranteed the existence of the integral for
(certain) functions with finitely many discontinuities” [Katz, 725]. Problems posed
by Dirichlet and Riemann in the 19% century were with regard to emergent subtleties

that ultimately led to the rise of modern analysis. Several of the questions were in
response to the work of Fourier on heat flow, which is a topic in our next chapter.

Example 2.23. Earlier in this chapter, we asked about the formula log(1 + x) =

2 3 . .
x- x? +2—.... A traditional derivation of this starts with the geometric series
L ;=l—x+x2 - x> +---for|x|<1. We can now easily justify the
I+x 71— (-x)

convergence of this series by using convergence tests discussed above. To formally
obtain the logarithm formula, just integrate the formula term by term. This produces
2 3

the expression log (1 + x) =x- ? + 3

As already mentioned, there are at least two questions that need to be addressed.
Does the new integrated series converge; and if so, does it converge to log(1 + x)?
For 0 £ x < 1, the right hand side is an alternating series, where the summands
clearly converge to zero. So, 0 < x < 1 the right hand side of the series does indeed
converge.

How, though, might we connect this limit with the logarithm function?

Recall that the symbolism for a convergent series is an abbreviation. When a series
converges, the short hand expression excludes writing the remainder term. In order
to analyze convergence, evidently we need to know what is going on in that remainder.

2 3
Now, the formula log(l + x) =x- x? + x? — -+ came from integrating the geometric

series. So, let’s go back to the source. The original geometric series, with remainder
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. . 1 1 p) 3 n n (_x)n+1 ..
included, is — =———=1-x+x> =&’ +--(-1)'x" + . Thisis a
1+x 1—(—x)

1-(-x)
finite sum, so there is no problem with integrating term by term: We get

x2 x3 . xn+1 x(_l)"'*‘l' n+l
log(1+2)=x=Z+ 3 G g+

dt . The question then is

x (_1)n+1 tn+1
whether or not the remainder term R, (x)= | ~—-———dt converges to zero,
" 1+¢ g

as n gets large.

If the denominator in the integrand were not present, then this integral could be
calculated explicitly. However, we don’t need to know an exact value for a remainder.
We just need to get an estimate on it, to know that it (or equivalently, its absolute

value IR,, (x)l) converges to zero as n gets large.

Recall that the larger a denominator, the smaller the ratio. For example,

I -1 5x5 l
(—ll— < \ - l)5 x |= x* . Recall also that for the series in question, | x|<1. ~
1+[ )

2

So, on the interval of integration, as ¢ increases from 0 to x 2 0, the denominator
1+ tincreases from 1 to 1 + x. The end point ¢ = x is fixed, and the variable of integration

(_1)"+1tn+l
1+x

n+1

is ¢. So, if we look at the integrand, it satisfies <

<tn+l
1+¢

What though is the relationship between | R, (x)| = and the

t
1+1¢

X n+l pn+1
_[————( ) dt
0

X
integral j AP
0

+ More generally, how does an integral j £(t)dt relate to an integral ﬂ f (t)| dt.
0 : 0

If we use Cauchy’s formula for calculating the integral as a limit of sums, then

<
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wherever f{f) < 0, we get a summand for the integral of the form f{£) Ax < 0. On
the other hand, the summands for the absolute value function I f (t)l Ax=0 are

x

always non-negative. Clearly, therefore, I f (t)dts II f (t)ldt. And similar
0 0

reasoning gives that for any g(x)> | f (x)l, I f (t) dt< Il f (t)l dt< J g(t) de. Of
0 0 0

course, to prove these results would rgquire adverting to Cauchy’s definitions.

I(_t)n+l i
1+¢
0

For the example in question, we therefore get that IR,, (x)| =

x n+2

(n+ 2)

(_t)n +1

N < x"*2 Since x is fixed and less than unity, it
+1t

x
dt<.[tn+ldt=
0

immediately follows that the remainder term converges to zero as n gets large. We

3 +1
x2 n

conclude that 10g(1+x)=x—7+£3—---(—1)" z+1+---,for|x|<l.

Example 2.24. Another traditional example is again obtained from a geometric

series: I_l_ =1+x+x%+---, for | x| < 1. If we formally differentiate this term by
1-x

1 o
term, we get the expression ———— =1+2x+ 3x? ++--, for | x| <1. Again, is this
1-x
correct? Does the new differentiated series converge, and if so, to the quantity
indicated? As before, in order to abide by the definition of convergence and the
meaning of the symbol “---”, we need to examine the remainder term.

n+l

1 » X
——=l+x+x2+-~-+x"+1

n ,for|x|<1. This is a finite sum, so we can

n-1 n
o'+ (1-n)x
=142+ X2+t nx” 1+————(——L—

differe-ntiate all terms. This gives
s RTINS | (1-2)

2
-1

‘ A
for| x|<1. The remainder in this case is R,(x)= '™ = (n 1) . Since the

(=)
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coefficients in the numerator are functions of n, this remainder is a little more
subtle to analyze.

Clues: Keeping in mind | xl <1, consider the ratio

R, (x)

R
L(x) < a<1?More precisely,
R, (x)

R X
11 (7) . Does there exist
x

0<a <1 such that the ratios eventually satisfy

. Rn +1 (x)
does there exist n, such that for n > n, we have | —2\ < 1 <19
R,(¥)
Observe that if this holds, then R, i3 '< a|R, ., ,< a Ry 41 I< a R, |;and

more generally, ‘Rn0+k'<aano+k_ll< aZ‘R,,O+k_2’<-~-<ak ’R,,O l What now
follows since 0 < g < 1?

Remark 2.2, Here are key questions that we have been looking at in the last
two examples:

Suppose that f{x) = S,(x) + R (x).

Question 2.6. If the remainder term R,(x) converges to zero, does it follow
that the integral of R,(x) converges to zero? The term R, (x) depends on location x
within an interval, while the integral is a sum across an interval.

Question 2.7. If the remainder term R,(x) converges to zero, does that imply
that the derivative of R,(x) converges to zero? If a function is small in value, does
that imply that the slope of the function is small?

Clearly, there are subtleties here that need to be sorted out. Other complexities
can also arise, as we will mention in the next chapter when we discuss Fourier
series. However, it is already evident that theorems are needed that delineate when
a series can be integrated or differentiated term by term.

2 3
Example 2.25. Let’s go back to the series log (1 + x) =x- x? + x? s (— 1)"

n+l x _ n+l
x—+j( t) dt,for|x|<1.
n+1 0 1+¢

What about the end points of the interval |x| <1?

For x = — 1, the left hand side log(1 + (= 1)) =log 0 is not defined. So that case
is basically a non-starter. All the same, it is interesting to see what the effect is of
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that substitution on the right hand side summation. For x =— 1, the right band side

x n+l

1 -1 -1 (1)

= — e —F |t
1 2+3 n ° 1+1¢

= 1+l+l...+-1_)+j'ﬁ)ij—ldt
- 2 3 n 5 1+¢

We already know that the harmonic series does not converge - in f:act, the sums
grow without bound. Note also that the*_denominator of the integrand is not defined
for x = — 1, so Cauchy’s definition does not directly apply.

An extension of Cauchy’s definition of integral designed to deal with this type

which becomes

-1 n+1

-1 (_ t)” +1 Definition Y (— t)n *1

example, however, even if we define J Toe dt m )T d

can be shown that the one-sided limit of integrals does not exist. (Note that the

notation * lim ” means the limit as x approaches — 1, from above.)
x—-1F

For the other end point of the interval | x | <1, formal substitution of x = 1 gives the

P r
=] - —4+——-.. +
formula log(2)=1 73"

1 n+l 1 (_ t)n +1
-y ) +I dt . The left side log(2)
n+l 0 1+t .
S "
is defined; and by the alternating series test, finite sums 1- > + 3 —et (— 1)

n+1 1 1 1
() 1-—=+=—---+(-1)" — converge to some target value.
n+l 2 3 n+l1

1

(_ )n +1
Again though, what though about the remainder term R, (x) = Jl—m— dt 7' We
0

1 n+2 1

t
< n+1dt=
.[t n+2
0 0

]c‘(_t)n+l dt
1+¢

have already shown that the remainder term
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= 1 .
s 2) - But, we only have the functional identification log(l +x)=x - x_2
2

x3 R n+l X
+?...(_1) L.,.J.
0

n+l

(_t)n+1
1

p dt for lxl<1. "I“his is of the form log(1 + x) =

S,(x) + R'n(x), where for each | x [<1, R, (x) converges to zero. Is it possible to
extend this to x = 1 by taking a limit in x ? Notice that the upper bound we have for

the remainder, namel 1 is i is i
ely nid’ 1s independent of x. This is usually called being
‘uniformly bonded”, Evidently, further interesting questions arise. The next Example

and Exercise help illustrate wh
: ‘ at can happen when t i
independent of the location x P ne convergence is not

Example 2.26. (“Non-uniform” convergence and discontinuous limits) In
3

the discussion of the series log (1+x)=x x + % A )
_ LA I A\ L 2
: 2 3 =) n+1+£ 1+¢ a,

X

w<fﬂ“ﬁ
0

the remainder. Specifically, ,Rn (x),=
1+¢

convergence at a particular x was determined by obtaining an upper bound for
n+2 n+2

X (_t)n+1 X (_t)n+l
P als]
0 0

X X

— n+2 n
‘(n+2)<n+2‘<x <kx . Clearly, for each O<x<l,

R,(x) , <x" converges

to iero. $1nce the control terms here are the functions y = ¥", it is reasonable to
make an independent enquiry into their convergence properties.

f:;:lxe;f;se. 2.39. On the closed unit interval, namely, 0 < x < 1, graph several

8 ! xe< ; (;tlllznsoy = x}”l, er;o?gh to get the pattelrn. Note that for each x satisfying
<x<1, reachn21, we have 0 <x" ! <x" < 1. Observe also th

: 1 <x"<1. at all of

the function y = x” are defined everywhere on the interval and that y)=1"=1 fc(:r

all . Consider y= 1 = .01. Fi
er x 5 and suppose that £ = .01. Find o SO that for n 2 n,,

(5) <.01. All of the functions reach the point (x =1, y = 1), and as graphical

representation suggests, the ny that works for x = 1 might not work for values of
-2
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x closer to x = 1. Indeed, using the n, just obtained, find 1> x> .;_ séfisfying

(x)"° >.01 . Repeat these calculations for the general case. That is, supposé 0<x;
< 1,0 < £<1 and that for all n > n, we have (x,)" < & Find 1 > x > x, such that
xv>e.

This shows that while at each 0 < x < 1 the functions y = x” converge to zero,
the rates of convergence depend on the location within the open unit interval.
Notice too that if we make use of the entire closed interval 0 < x < 1 over which
the functions y = x” are defined, there is a limit function on the interval, but the

.. L . o 0 0<sx<1
limit function is not continuous, for the limit is defined by f (x) =11 E
. { x=

This last Exercise 2.39 touches on the need for further study into types of
convergence. When the rate of convergence can be controlled by the same r, for
all x in an interval, the convergence is called “uniform”. Limit functions obtained
in this way inherit many properties of functions from the approximating sequence.
A detailed study of these questions though would go beyond the introductory
purpose of these notes. .

Example 2.27. (Taylor Series) For most of the examples above, ad hoc
calculations were used to obtain as well as analyze various series and their remainder
terms. A more systematic approach is given by a “Taylor series”, which provides
explicit formulas for generating series. As mentioned above, James Gregory
(1625 — 1683), Newton (1642 — 1727), Euler (1707 — 1783), Lagrange (1736 -
1813), Fourier (1768 — 1830), and others made use of the interpolation formula

f(x)=r0)+ 7 (0)x+ f’;(!O) x* + f”:;!(O) x> +---. Because of Taylor’s (1685 —

1731) publications on the subject, the formula was later named the “Taylor series”
of the function y = f{x).

As we have been doing, we can enquire into the convergence properties of the
series. The Taylor series is constructed in a systematic way from a given function.
So we can ask, for a particular function y = f{x), does the Taylor series converge,

and if so, does it converge to the given function y = f{x)? It turns out that this is a
non-trivial question. For example, Cauchy discovered that the Taylor series for the

function f (x) =¢™ +¢ does not converge to the function [Katz, p. 707]. To

study convergence of Taylor series, it helps to look to the origin of the formula,
which is the problem of “polynomial interpolation”. Polynomial interpolation is the
use of polynomials to approximate a given function y = f{x) (usually near a given
reference, or “center”, x = a).
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What is. the best constant function T(x) = 4, to choose so that, at least near
x = a, the 1nt.erpolating function Ty(x) = 4, agrees with the given f:mction at the
refere.nce point x = a? Of course, we are forced to choose Tp(x) = fla). Next
what is the best linear function T)(x) = 4, + Aix—a)to choosg so that a; x= a’
both‘the function value and its rate of change agree with the original ﬁmction, =£x) ‘;
Stralgh'tforward calculations show that T(x) = fla) + f’(a) (x — a) vJ\)zhich J(;f
course is the familiar “tangent line”. Next require that, at x = a, the app;'oximatin
second degree polynomial T,(x) =4, + 4,(x—a) + Ay(x— a)? (“hugging parabola”%
ha\{e tl.le same initial value, the same derivative (velocity), and the same second
derivative (acceleration). Doing the calculations gives that T 20) =fla)+f(a) (x-a)

fa
+ —ZQ (x-a).

If we keep going, and at each stage require that at the reference point x = g the
function value and the —1 derivatives of the interpolating polynomial of
degree y — ] agree with the original function, we get the Taylor series. That is, we
get the approximating (or interpolating) Taylor polynomial ' ,

T,_(x) = A0+A1(x—a)+A2(x—a)2+A3(x—a)3+---+A,,_1(x—a)n_1 of
degree (n — 1) given by

x)= fla)+ f'(a x—a+._f”(a) _y, S 3
() = 7@+ @) ema)+ D o LS (e
+ f(n_l) (a) n-1
(n—1)! (e=a)™

\ As we' discussed above, the question of whether or not this series converges to
the function value y = f{x) can be formulated in terms of the remainder

8ae) = 16| 0+ s @) e L e+ LD oy

A0
(n—l)!

+. (x__a)n—l

or

Roi(x) = £0)- 1(0)- £(@) (e -a)= L) (e g - L70) (_y
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Let’s look at a special case of linear approximation, where the Taylor approximation
is the equation for the tangent line T; (x) =f (a) + f’ (a) (x- a) . The remainder

term R, (x)=f (x)- f(a)- f"(a) (x— a) measures the difference between the
height of the tangent line and the height of the given function. See Fig. 2.21.

y=f)

9 (a)

W&ta

Figure 2.21

Think of the x as the point of interest. That is, suppose that x is fixed, and we need
to know the value of the function y = f{x) at x. Formally, the Taylor series can be
constructed around any center x = a. One way to look at this problem, therefore, is to
enquire into what happens to the remainder if we choose different centers a. Does
the magnitude of the remainder depend significantly on the choice of center for the
approximation? Following Cauchy’s lead [Bressoud, 107], we write the remainder
term in a way that emphasizes the dependence on the choice of center “a”. We

write R, (o, x)=¢(a)=f(x)- f () f*{a) (x— cx) , where o represents whatever

center is chosen. Note that by suppressing the x and simply writing ¢(c), we have
simplified the symbolism somewhat. This is justified since for the purposes of this
discussion the x is fixed. (See Figure 2.21 above.)

There are two remainders associated with the problem in a natural way, namely
the remainders ¢(a) and fx) corresponding to the centers & = a and o = x. From
the diagram, if the center a is close to x, we might expect a smaller remainder

term. For o = x we get ¢(x)=f(x)—f(x)—f’(x)(x—x):O; and.for ¢ =a we
get ¢(a)=f(x)- f(a)-f’ (a) (x — a) . How, though, does the remainder depend

on the choice of center? Does a strategic choice of center cause the magnitude of
the remainder to increase or decrease? The mean value theorem gives us that
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¢(a) - ¢(x) = (a - x) ¢ (c) for some c strictly between @ and x. After a few calcu-

lations, expressing this back in terms of y = f{x) we getthat R, (x) =f" (c) (x - a) .

For the general case, write ¢(a) =f (x) -f (a) - f (a) (x - a) _f ”2('0’)

(x- a)2 - /" (a) (x_a)3 f(n_]) (2) ( __a)n—l

3 ———— 7 In exactly the same way

as for the linear approximation, the mean value theorem gives that

¢(a) - ¢(x) = (a - x) ' (c) for some c strictly between a and x. Again, we have that
JS{x)=0.Using the product rule, straightforward calculations give that the remainder

()
is R,_(x)= (:1 (1)2 (x—¢)""' (x—a). This is called the Cauchy Remainder

Theorem.
Exercise 2.40. Use Cauchy’s remainder to analyze the convergence of the

Taylor series for the function y= log(l + x), | x|< 1. Choosing the center a = 0,

the Taylor series is the same as the series developed in the examples above, that is,

2 3
X X
Ta=v-Da (-

2

n+1

' 9 .
For x= E , weobtain 0<c< % and the Cauchy remainder

f()c) "=lrg
|1 (9] - 1)'(10 C) (E_OJ
=;41+cY"( "9
(n-1) '“c) (E)
For n 2 4 we have (l+c)_"— L 1 <1 and so

(=1 (n=1)! (1+c)"
L () -9 )
() @)
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Exercise 2.41, Calculate the Taylor series and analyze the convergence for the
functions f{x) = cos x, f{x) = sin x, and f{x) = €".

Notes 2.3. We now have more than one way of calculating remainders for
interpolation of the logarithm function f{x) = log(1 + x). One way is to use the
Cauchy remainder. Another approach can be taken by using our results based on

2 x3 n+1

geometric series. That is, we may write log (1 + x) =x- x? + ? (—l)n

n+l

+

dt , for | x | < 1. How though are the remainders related? Is one formula

j (_ t)n +1
0 1+¢
for the remainder better than the other? Cauchy’s remainder formula provides an
explicit estimate on the remainder, in terms of the given function. In that way, we
obtain a completely self-contained collection of terms determined by the function
y = f{x), its derivatives in the finite Taylor series, and the remainder term. There
are other formulas for remainder terms. One of these was developed by Lagrange.
There is also an integral remainder formula. See, for example, [Spivak, p. 390].
See [Bressoud, p. 108] for a comparison of the Cauchy remainder and the Lagrange
remainder, for the function log(1 + x). At some stage in the calculation, the derivation
of each well known remainder formula typically appeals to the mean value theorem
or the Fundamental Theorem of Calculus, or both.
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Topics: The notion of relative change; relative change as a premise of Newton’s
laws of motion; d’Alembert’s wave equation; d’Alembert’s result on a class of
solutions of the wave equation; Heat flow, Newton’s Law of Cooling and Fourier’s
Law of Heat Conduction; Fourier’s heat equation; Finding solutions of the heat
equation by separation of variables; Fourier series; finding solutions of the wave
equation; the beginnings of modern analysis.

3.1 CHANGES IN PERSPECTIVE

The purpose of this section is to help enrich appreciation of a change in perspective
that occurred in mathematics and physics, due in large part to Newton’s discovery
of a new approach to physical geometry. It is to be noted that some familiarity
with that change in perspective can be most helpful in understanding later
developments and topics of this chapter, namely, the wave equation, the heat
equation, and Fourier series.

In early mathematics, geometry of the world was studied in terms of ideal
objects such as rectangles, circles, conic sections, and so on. This was the main
perspective up to the 16 century. However, two scientists of the 16™ — 17t
centuries helped bring change to the way things were thought about, and this
helped prepare the field for Newton’s discoveries in calculus and mechanics.

J. Kepler (1571- 1630) discovered the celebrated laws of planetary motion
[Burton, 362]:
1. The planets move in elliptical orbits with the sun at one focus.
2. Each planet moves around its orbit, not uniformly, but in a way that a straight line
drawn from the sun to the planet sweeps out equal areas in equal time intervals.
3. The squares of the times required for any two planets to make complete orbits

about the sun are proportional to the cubes of their mean distances from the
sun.
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A main feature of these laws is the emphasis on the static structure of a planetary
orbit - in continuity with the efforts of the early geometers 2000 years prior. There
are, though, aspects of Kepler’s laws that were new, when compared with classical
geometry. While the emphasis of Kepler’s laws is on a static geometry, the laws
involve changing areas and time intervals. The perspective though was still primarily
classical. In particular the “laws of planetary motion” do not explain the motion as
such, and nor do they account for other possible motions such as, say, how an
apple falls from a tree.

At roughly the same time as Kepler, but in a more a southern part of Europe, (5.
Galileo (1564-1642) was also studying the geometry of motion. He was, though,
more earthly in his interests. Instead of looking to the heavens, Galileo looked to
the. puzzle of free-fall, where a free-falling object most noticeably increases its
speed while falling toward the ground.

Galileo developed an approach that in fact helped lead to the emergence of
modern science. Before Galileo, there were various speculative ideas about the
“nature” of motion: An object could be carried by its “principle of motion”; “heavier
objects fall more quickly than lighter objects”; and so on. Galileo’s objective partly
was to obtain a geometry, in the spirit of Euclidean geometry. In that sense, his
focus was not on dynamics as such, but on the possibility of obtaining geometric
structure. Nevertheless, seeking a geometric system for motion was new; and the
follow up of his approach transformed science. Galileo’s novel approach had at
least three new components: Measure time and distance as simultaneously occurring
aspects of a free-fall; try to identify a relationship between the two sets of
measurements; and check the hypothesis with experiment.

Certainly, there were those besides Galileo who had made use of experimental
data. For instance, Kepler’s results were based on the extensive tables of
observational results obtained by his sénior collaborator Tycho Brahe. Brahe spent
many years carefully measuring and recording the motions of the objects of the
night sky. Kepler’s breakthrough, however, only regarded planetary motions. What
was notably unique in Galileo’s approach was the deliberate effort not only to find
a relationship between different sets of measurements that belonged to the one
trajectory, but to place the results within the context of an experimentally verified
geometric system. His approach was then the precursor to the later search for
geometric explanations of a new type, namely, correlations of measured distance
and time, relatively independent of an observer. i

There were no high precision clocks in those days. One may wonder what
Galileo might have used to measure “time”. There is some evidence that Galileo may
have used a musician to establish a steady beat [Drake, p. 98]. In order to make
measurements accessible to the techniques available, he “slowed down. free-fall
motion”. For, instead of trying to measure distances and times for an actual free-fall,
he rolled balls down planes of wood that were tilted at small angles. See’ Flgr;3 1
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Rolling ball

Measured distance s in time ¢

Figure 3.1

The experiments provided tables of measurements. With notable perspicacity,
Galileo discovered that the measured distances traveled were proportional to the
squares of the measured times. In modern notation, in units of ¢ seconds and s
feet, his law turns out to be s = 16¢ feet in ¢ seconds (that is, the proportionality
constant is 16). Note that this result expresses a correlation between sets of
measurements, and so does not regard the appearance or weight of an object. In
particular, it implies that even though a marble slab may have a tremendous weight
compared to a small stone, they will both fall at the same rates!

Newton’s breakthrough enveloped, subsumed and went beyond the results of
both Galileo and Kepler. Newton had what can be called an “inverse insight”.
While those before him had speculated on the “nature of motion”, Newton’s insight
was that it is not motion as such that is to be understood directly, but change in
motion. Instead of trying to explain straight line constant velocity, explain changes
from straight line constant velocity. In other words, formulate a theory in terms of
rates of change of rates of change.

Recall from Chapter 2 that the rate of change of distance s with respect to time
tis the derivative v = %j— . This is called the velocity. In the same way, to calculate
the rate at which the velocity changes (the rate of change of the rate of change)
we calculate a = % . This is called the acceleration. In terms of the distance, —i%

d (éj | 2
_ dt d°s
dt

. Traditionally, the acceleration therefore is denoted short-hand by PR
t

Newton had results of collision experiments, from which it was known that in
elastic collisions between two objects, the sum of the momenta (mass) X (velocity)
of the two objects is conserved. That is, if v,, v, are the velocities before a collision,
and V;, V, are the velocities after the collision, then m,v; + m,v, ¥mV, + m,V,.

This can be written as m;(v; — V) = — my(v, — V). This equation is for a unit

~of time At. Including unit time explicitly, we get m (vl ;tvl ) =-m (V2 ;tvz ) ’
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where the ratios are the average accelerations for that time interval. Letting the
time interval get small, we obtain m,a; = — m,ya,, where a,, a, are the limiting
values of the average accelerations. (In other words, a,, a, are the exact
accelerations.)

The product “mass times acceleration” is called force. As can be inferred
from conservation of momentum, one of Newton’s general laws of mechanical
motion is that forces occur in equal but opposite pairs. This is sometimes expressed
as: “To every action there is an equal but opposite reaction”. In this context,
note that “action” and “reaction” are not descriptive words for “push” or “pull”,
but names for forces, where force is mathematically defined as mass times
acceleration.

If we include his other law on how to combine “applied” forces, we are lead to
the well known result that the net force is equal to the sum of all other forces in the

system. In symbols, (ma)zvet =2‘m’.ai . For the special case of gravity, he

conjectured that the force of gravity is proportional to the product of two interacting
masses times the reciprocal distance squared. Newton thereby obtained his universal
GMm

avity = 7— = May, = — Mlygaes m » Where M, m are the

law of gravitation, F,

masses of the objects, G is a universal constant, and the force due to gravity is
directed along a straight line between the two masses.

Where the results of Kepler and Galileo applied only to certain types of motion,
and regarded only certain trajectories, Newton’s laws determined a general and
universal system of change in terms of accelerations, which applied to all motions.
Moreover, in the special case of gravitational force, Newton’s laws could be used
to re-derive both Kepler’s law and Galileo’s law.

We can now relate this back to the question of geomktry. Early geometers tried
to find the static geometry of ideal objects. Even the great Archimedes (who grasped
the meaning of limit with a refinement that was not matched for another 2000
years) did not develop a theory of change, but rather used limits of sums to identify
target values for static areas. Newton, however, made change a fundamental premise
of his theory and consequently developed a general system of dynamics. In
particular, Newton discovered general laws of motion for how, relative to each
other, physical lengths accelerate in time.

3.2 J. (LE ROND) D’ALEMBERT’S WAVE EQUATION FOR A
VIBRATING STRING

Imagine a 10 foot horizontal string fixed at both ends, held taught between two
poles. See Fig. 3.2.
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Figure 3.2

Imagine that at one point of the string, someone lifts the string by a couple of
inches or so, and then releases it. The string begins to vibrate. See Figure 3.3.

Figure 3.3

The end points are fixed. One finds that segments of the string move up and
down. The problem posed is to find the height y as a function of time, where the
height y is the distance away from the initial level. The string will be at different
heights at different locations. So, the height y will depend on both horizontal distance
x, 0 <x <10 and time ¢. We therefore write y = y(x, ).

How can we find y = y(x, £)?

The height is a quantity that changes in time. The string has mass, and its
vertical speeds repeatedly change direction and so both increase and decrease. In
other words, there are accelerations.

Newton gave us a law to study such motions, namely, may,, = Zmiai = Z F..

How can we apply that to a length of string that moves differently at different
locations?

D’ Alembert’s approach was to isolate one small segment of string at a time.
See Fig. 3.4. '
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1 X2

Figure 3.4

Suppose that the horizontal length of the segment is Ax = x, — x;, and that x is
the midpoint with x; < x < x,. For simplicity, we suppose that the elastic tension
(force) in the string is constant F, and that the string is approximately uniform in

mass

its linear mass density, with constant ratio = u . From Fig. 3.4, the mass of

oot

the segment is therefore x4/ Ax* + Ay* . For simplicity, however, we suppose
that the motions have a relatively small displacement, with relatively small Ay. The

mass of the segment is then approximately/ M (Ax)2 +0 = uAx.

The end point angles 8, 6, of the segment of string may be different. There are
two forces acting on the segments, one from each side due to the tension F. Our
question though regards the vertical motion of the string. Newton’s laws tell us to

add the vertical forces to get majer ™ = 2 E¥" _In our case, we therefore get -
the approximation (#Ax) (acceleration of y(x, £) in y direction) = F sin & — F sin 6,.
What can we do with the term “(acceleration of y(x, £) in y direction)”?

We are already working under the hypothesis that we are looking at only one
segment of string, namely, a segment centered over x. The term “(acceleration of
y(x, ?) in y direction)” is therefore something that we already know how to calculate.
For, if x is fixed, then we need only calculate the second derivative with respect to
time ¢. Note, however, that since the string can move differently at different places,

" we need a symbolism that expresses that we are calculating the second derivative

with respect to time, at a particular location x. The traditional symbolism used to
express that we are holding one of the variables fixed is the symbol “0” (“del”
instead of “d”).

Our approximation equation for how the height changes can then be written

2
(,qu)—a%z=F sin@, — Fsin6, .
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For simplicity, let’s suppose for now that linear mass density and tension are

2
both unity. This last equation then becomes (Ax)% =sinf, —sin 6, .
. t
In keeping with the approach to geometry that was initiated by Galileo and
fnade systematic by Newton, we can try express this equation of change completely
in terms of distances and times. We therefore need to re-express the two sine
function quantities in terms of distance and time.

'We.: are 'working under the assumption that the displacement is relatively small.
This implies that the angles 6;, 6, are also relatively small. Observe then that

sing, .
tan g, = g = Sin 6, . Note also that the tangent function is another expression

cosé,
for geometric slope. In other words, tan 6, ~ i)y_(axl,_t) .
X
The same reasoning gives us that tan6, ~ 23—)(—;&
X

Substituting these ratios of lengths into our equation of change gives us the

Py(%,1) ( 9y (%) _ 3y(n, ’)].

or? ox ox

approximation (Ax)

- It is understood that all of the equations are developed as approximations. Just as
in calculus, in order to improve the accuracy of the approximation, we can successively
reduce the horizontal length Ax. This means trying to identify a target value or limit

(x1) 3y(x, t)J

2
for the right hand side of the equation o y(x, t) =~ ( o Ox
o Ax

By definition of derivative, if the limit of the right hand side exists, the ratio

(ay(xz,t) B ay(xl,t)J

ox ox 92
y(x,1)
e converges to —= 5=
2 2
We therefore obtain the equation 9 )(_; (f’ J) _9y (;" ) .
t ox

This ‘is an equation for how the height of a vibrating string changes in time. It
was derived by applying Newton’s laws to a string, under the hypotheses of small
displacement, unit linear mass density and constant unit tension.
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Partly because the motion of a vibrating string can look like wave motion along
a string, this equation has become known as “the wave equation”. There are though
mathematical reasons for the name as well. There are the results of d’ Alembert
where he identifies a general class of solutions to this equation. See Section 3.3,
below. In order to find particular solutions, there is a technique called “separation
of variables”, which reveals further connections to “mathematical waves”. See .
Section 3.4.

Exercise 3.1. Using the same or similar rationale, derive the more general equation

o%y(x.t 9%y(x,t . : .
Y (J; ) = Floy (f_ ) , where tension F and linear mass density need not be
ot y7, ox 4
unity. _

Exercise 3.2. For the surface of a drum we can pose the same question. What
is an equation of motion for a vibrating drum skin?

Clues: Use an x and y grid for the surface, let u(x, y, f) represent the height as a
function of x, y and . Suppose that there is uniform surface area mass density oand
uniform surface tension S. For each small rectangular segment of dimensions dx X dy,
use Newton’s laws, first along the x direction; and then along the y direction. Again
using Newton’s laws, we can add these results to get the net vertical force which

2
is defined in terms of %—Z . Taking limits and simplifying, obtain the 2-D wave
t

e uatioﬁ for a vibratin, mémbrane namely. &—(E) az_u+ﬂ
! B TP Tot \oJlax )

3.3 D'’ALEMBERT’'S APPROACH TOWARD CHARACTERIZING
SOLUTIONS OF THE 1-D WAVE EQUATION

We now have the 1-D “wave equation” for a vibrating string. (From Exercise 3.2
above, we also have the 2-D wave equation for a vibrating membrane, but will not
look at that in detail in these notes. We leave the 2-D case as an Exercise for the
reader.) For the vibrating string, what was the original question? It was to find a
function y(x, 7). We don’t yet have a solution to the problem as posed. We do,
though, have the “rule of change”, or “equation of change”, that tells us how y(x, 1y
changes (accelerates) relative to both changes in time # and changes in horizontal
distance x. So, following the approach of d’Alembert, let’s see if at least some
information can be obtained about possible solutions to the wave equation.

Suppose that a string is held taught, secured at two ends, and is then plucked.
The resulting motion ‘as such is vertical. However, over time the displacement

pattern steadily shifts back and forth along the string. See Fig. 3.5.
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Figure 3.5
0%y (x,t 0%y (x,t
The form of the wave equation };EJ; ) = (%j Ji;()zc ) is independent of
x

location x. Indeed, except for the fact that the motions occur at different times,
laboratory experiments reveal that the overall pattern of motion at one location x, is
identical with the pattern of motion at any other location x. Hence, suppose that
vertical displacement at x, is given by some function f{#) that is independent of

- location x. Suppose also that the displacement pattern moves along the string with
a constant speed c. So, after a time ¢, the vertical motion g(x, £) at x = ct is identical
with the motion determined by f{#). In other words, g(x, ) is simply the translate
of f(#), which means that g(x, 1) = f(x — c?).

Could a function g(x, 1) = fix — ct) constructed in this way be a solution of the
wave equation? In other words, if we hypothesize a motion of a string that is
obtained simply by translating some arbitrary function f{#) by a constant speed c,
might the overall effect g(x, #) = fix — ct) be a solution of the wave equation?

Let’s see what happens if we calculate second order partial derivatives:

a2g(x,t) _ E)Zf(x—ct)=02 a‘f

; and
at2 8t2 dZZ
g (x,t O f(x—ct 2
38(72‘ )= f§x26)=fl{,Wherez=x—Ct'
x x
2 2
We therefore get that 9 g(ch, t) =c? o8 (’2"’ ) )
ot ox

. . . F .
In other words, we get a solution of the wave equation with (—j =c*. Inits

)7
time this was a surprising result. See Fig. 3.6.
For, the result tells us that if we use any! function f(¢) as an initial function, and
suppose that its displacement pattern moves (“propagates”) in the positive x direction

with constant velocity ¢, then the resulting translate function g(x, ) = fix — ct)
defined across the entire length of the string is a solution of the wave equation.

[
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Figure 3.6

Exercise 3.4. Repeat the analysis for a displacement pattern moving to the left.

Clue: 7 = x + ct. See Fig. 3.6.

It now follows that we get a class of solutions of the wave equation: Let f;(?),
£>(f) be any two functions (with second derivatives defined). Construct a
combination of two propagations, a propagation of the dynamics of fj(#) to the
right with speed c, and a propagation of the dynamics of f,(¢) to the left also with
speed c. Then the new function y(x, £) = fi(x — ct) + fo(x + ct) is a solution of the

o 9%y(xt) - azy(x,t)
wave equation 852 )=c2 Pa

It is interesting to see that, at least for an ideal string, this would mean that the

speed of propagation is given by ¢ = f % . This seems plausible. Suppose that a

stﬁ'ng has given mass density. (Without loss of generality, assume that ¢ = 1. If
you do a few experiments, you will find that the more taught a string, the faster the

propagation. This is consistent with ¢= /% , which says that, with ¢ = 1, the

speed of the wave is proportional to ¢ = \/—I? . This can of course also be checked
accurately in elementary laboratory experiments.

Exercise 3.5. Suppose that y,(x, ), y,(x, f) are two solutions of the wave
equation. Is y, (x, ), y,(x, t) a solution? Can you relate your answer to the origin of
the wave equation in Newton’s laws? Clue: Recall Newton’s Law for combining

forces.

Remark 3.1. D’Alembert (1717 - 1783) initiated a methodical approach to
modeling physical empirical processes by using partial differential equations. In
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particular, he discovered the partial differential equation for wave motion, and

" obtained preliminary results on a general class of solutions. He was not able, though,
to systematically produce particular solutions to the wave equation [Katz, 578 ff].
In the present case, we will follow history, and take up the problem of how to find
particular solutions of the wave equation, but only after we have first investigated
the heat equation, which is another famous partial differential equation.

3.4 HEAT FLOW AND THE HEAT EQUATION
3.4.1 Newton’s Law of Cooling

- Newton’s Law of Cooling is a basic premise that was used in the development of
the partial differential equation for heat flow. So, we start with a discussion of a
hot drink that is sitting in a cool room. Imagine a cup of some hot drink, perhaps
your favorite Darjeeling tea. At first it seems to cool down fairly quickly, but then
stays warm almost indefinitely. Is there perhaps a well-defined relationship between
changes in temperature and changes in time?

Note that since many of us have observed the same effect in many different
settings, we may reasonably conjecture that it is probably not room temperature as
such, but the way that the temperature of the tea (or object) changes, relative to
the room temperature.

What could our approach be? Newton was developing theories in terms of
particle motion. In particular, he had equations for kinetic energy. So, taking a
particle approach, we give a sketch for how the Law of Cooling could be derived.

Imagine that the drink consists of particles in motion. In this type of particle
model, heat or temperature is taken to be proportional to the average kinetic energy
of the particles. Calculations therefore directly regard, not change in temperature,
but change in average kinetic energy of the particles. Cooling occurs when the
moving particles of the fluid loose their kinetic energy through collisions with
nearby air particles. By the same token, this causes these air particles to increase in
their average kinetic energy, and so the air near the hot drink is warmed in this
process. But, in the particle model, this type of heat transfer continues to occur in
the air particles as well, and so the effect spreads throughout the room. Since the
room is extremely large compared to the cup, the average heat transfer to the air
particles of the room is negligible compared to the average heat loss from the
much smaller number of particles in the cup of hot drink. Consequently, in the
particle model the temperature of the large room is assumed to be approximately

constant. Note also that on-this approach we can expect that once the average

kinetic energy of the hot drink equals the average kinetic energy of the air particles,
the average change in kinetic energy will cease. In other words, the temperature of
the hot drink will decrease, but not below room temperature.

Discovering Real Analysis 121

Let’s now try to make this a little more precise. From the last paragraph, we
may take the average kinetic energy for the tea to represent the average kinetic
energy above the average kinetic energy of the room particles. And we are
supposing that the temperature/average kinetic energy of the tea decreases through
collisions of drink particles with air particles. In our model, this will occur only at
the surface of the cup of tea. In other words, we assume that the cup holding the
tea is well insulated, except of course at the surface that is open to the air. Suppose
for simplicity that there aren particles of tea in the whole cup; that & of these
particles are at the surface; and that each tea particle that collides with an air
particle looses all of its excess kinetic energy. (Since we are looking to averages
relative to ambient room temperature these assumptions are not as strong as they
may seem.) At the same time, it is supposed that the tea is reaching its own new
average kinetic energy. And since we are looking only to averages, the loss in
excess kinetic energy in the tea is therefore approximated by the ratio. of particle

. n—-o . e
numbers. That is, KEj,, = (—) KE, ;.. - We therefore get that in unit time,
n

n—o -
KE final KE, i = (T) KE, it = KEiitiat = (T) KE ot -

However, while we assume that tea particles collide with air particles, we also
assume that they are neither destroyed nor leave the “premises” of the tea cup. In
other words, for the dimensions involved, we suppose that there is no significant
change in the volume of tea. But, it then follows that & and » remain constant for

. . o, )
the cup of tea, which means that the ratio — is a constant as well. In other words,
n v

after a unit of time (at the next stage of cooling), exactly the same argument
applies, with the same constants in place - although the tea would be starting from
a lower average kinetic energy. Therefore, as the process continues in units of
time, the average kinetic energy continues to drop at the same proportionality rate

“%kE. Evidently, the model predicts an exponential decay process. If the time
n ' .

scale is relatively small compared to how long it takes for the temperatures to

change, then, based on our arguments so far, we obtain the following differential
equation as an approximation to the average change in kinetic energy:

dKE =(i) KE .
dt n

Now, Newton’s Law of Cooling is this result, but stated for temperature.
Remember that in the present approach, average kinetic energy is assumed to be
the kinetic energy above the kinetic energy of the air particles; and is also assumed
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to be proportional to temperature (KE = rT for some constant r). So, our result

f_(fT%W = (ﬂ) (rT = rT,yon ) - But, the derivative of the

n
constant 77T, is zero, and the common term  may be divided from both sides of
the equation. Simplifying, we get Newton’s formula as it appears in many Calculus

can be written as

books: ‘2—? =- k(T - T,oom) for some constant k.

Notice that the larger the temperature difference T — T,,,, the larger the rate of
change of T. In some books it is said that the rate of change of temperature is
proportional to the temperature drop, or temperature gradient. See also Fourier’s
Law of Heat Conduction, derived in Section 3.4.2 below. Note that under the
hypotheses for which we just derived Newton’s Law of Cooling, heat is defined as
a form of “energy transfer”; and where the energy transferred was assumed to be
kinetic energy. In nature, there are many forms of energy and many ways that

energy can be transferred.

Exercise 3.6. Let’s now see how we might use Newton’s Law of Cooling in an
initial-value problem. For example, suppose that a cup of Darjeeling tea starts out
at 98°C, and that the conference room you are in is at a temperature of 72°C.
Suppose that after three minutes, the tea temperature has dropped to 90°C. The
conference session is to go on for some time. How long will it take for the tea to
cool down to 80°C? .

3.4.2 From Newton’s Law of Cooling to Fourier's Heat Equation

When making pancakes, have you ever used a one-piece cast iron skillet? See Fig. 3.7

Heat spreading to handle

Figure 3.7

Once you’ve finished cooking the pancakes, you put the skillet aside. Be careful
though, for if you reach for the skillet a little while later, heat from the base of the
skillet will have spread into the handle. What is happening? ’

We can follow the approach of Jean-Baptiste Fourier (1768 — 1830). Instead of
trying to figure this out for a complicated object like an iron skillet, let’s first try to
understand this process in something simpler. Suppose that we have a very thin

|
|
|
|
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iron rod, of relatively small radius. To be able study only the effect of the heat
spread within the rod, and at the same time to eliminate possible effects of other
heat sources, let’s suppose that once we heat the rod near the middle say, that we
quickly wrap it up in a material so that it becomes perfectly insulated — no heat gets
in, and no heat gets out.

Restricting now to this ideal situation, we can ask: How does heat spread along
the insulated rod? See Fig. 3.8.

Head flow
o — — 0
> >
Rod
Figure 3.8

Evidently, the spread of heat along the rod involves differences in heat that will
depend on both time and location. How can we measure “heat”? As discussed
above in the development of Newton’s Law of Cooling, heat is a form of energy,
and is taken to be proportional to temperature (based on some convenient
thermometer scale). ‘

Note also that heat (and therefore temperature) vary along the rod. The linear
heat density u(x, t) (units of heat per unit length) is therefore a function of both
location x and time ?.

By definition of linear heat density, for a small length of rod Ax, the amount of
heat energy in that segment of rod is approximately u(x, ) Ax. Following d’ Alembert
(and others), let’s try to find the correlated rates of change for heat, location and
time by looking at a small segment of the rod, of length Ax = x, — x,. See Fig. 3.9.

dx dx
( Cross-section at x; (E Cross-section at x,
e 7
*1 v *2
Ax=x,-x,
Figure 3.9

Whatever may occur along the length of rod Ax = x, — x|, as long as we assume
that there is conservation of heat energy within the insulated rod, then the only
way that the heat energy along the length Ax = x, — x; can change is by propagating
past the cross-sections at x = x; and x = x,. We therefore get the master equation

o[ Volume of Heatin x, S x<x, |

= [Time Rate]]pas cross
ot section at x,

- [Time Rate] ‘past cross-

section at x;
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Next, let’s take one part of this equation at a time, and so try to determine the
rate at which heat flows past each cross-sectional area.

Newton’s Law of Cooling tells us that the rate of heat transfer through a medium
of constant temperature is proportional to the temperature drop. So, for our
purposes, let’s suppose that the metal rod is small enough in radius that the
temperature is constant at every point of a cross-sectional disk of unit area.

As already mentioned above, since we have a linear density function for heat
energy given by u(x, 1), for dx very small, the product u(x,, ) is equal to the total
heat energy along the small length dx of rod. Note that this small increment dx is
based at x = x;, and is therefore different from the length Ax = x, — x,.

By Newton’s Law of Cooling, the time rate of change of heat energy past the
cross-section of surface area at x = x, is approximated by %[u (xl, t) dx] =
-k [u (x+dx, t) - u(x, t):| , for some constant £. (Typically, the constant k is a
property of the type of metal.). :

Therefore, Ju (x,1)
ot

[l +dv. ) u(x.1)] Letting de
due to cross-sectional dx .

flow at x;

approach zero, we get that the limiting value for the time rate of change of heat

- du(x,t
across the unit surface area of a cross-section is given by M

at due to cross-
sectional flow

Qu(x,t
)
ox
This more refined version of the Newton’s Law of Cooling is called Fourier s

Law of Heat Conduction, and tells us that that the time rate of change of heat
energy across a sectional area is proportional to the spatial rate of change of the

“au (x’ t)”
ox

temperature gradient (meaning gradient with respect to the space coordinate x).

heat energy. Note that the partial derivative is frequently called the

Of course, an exactly similar result is obtained for the other end point, at x =x,.

au(xz,t) __kau(JCpt)

ot due to cross- ox
sectional flow at x,

That is,
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We can now substitute these values into our master equation to obtain

E)[Heat inx <x<x)

= [Time Rate at x = xz] - [Time Rateat x= xl]

ot
o[Heatin x; < x < x, du(x.t)] [ ou(x;,1)
Y e Ve 07 B B G L)
ot ox i ox

This leads to the approximation

3 u(x.1)Ax] 3 [_k au(xz,t)] _ [_k du(x;,7) | _ k'[au(xz,t) _ au(xl,t)}

ot ox i ox | ox ox
Dividing by Ax implies
ou(x,, 1) _ Ou (x.2)
iu(_xl,_t)] o —f| —Ox ox
ot Ax

Now, the length Ax = x, — x; was arbitrary. If we let x, approach x,, and assume
that the physical approximations improve accordingly, then the limit gives

Aulwy)] _ l_fv[azu(xl,o],

ot ox?

ou(x,t o%u(x,t
Removing the brackets, this can be written as “ (atl ) =—k ua(le ) , which
X

is Fourier’s famous heat equation.
3.4.3 Summary of Derivation of Fourier's Heat Equation from
Newton’s Law of Cooling

Assume conservation of energy within an insulated rod. That is, the rod is assumed
to be insulated so that energy flow only occurs along the interior of the rod. This
allows us to start with;a"_(l-dimensional) master equation

o[ Volume of Heat in x, < x < X,

5 = [Time Rate]oess

—[Time Rate] |across
surface at x,

By definition of linear heat density, the total heat along the length of rod Ax = x,
— x; is approximated by u(x,, 1) Ax.

Newton’s Law of Cooling/Fourier’s Law of Heat Conduction gives the heat
flow rates across the sectional surface areas. This gives us the approximation
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Afun.)ax] _k_a"(&’t)_au(xut)].
ot ox ox

To finish the calculation, divide by Ax to obtain

[ Qu(x,,t auxl,t_
] | -5

ot Ax

du(x,,t) _ ou (xl,t)—

a[”(xl’t)] ~—f| —0x ax
ot Ax
' : . . . u(x,1)
Now, taking the limit as Ax goes to zero gives the heat equation o =
0%u(x,t
_ Quln)

ox?

Exercise 3.7. Develop the heat equation for heat flow through the interior of a
plate that is perfectly insulated above and below. Clues: We are supposing that heat
flux is only horizontal. Look at a small rectangle of the plate, of dimensions Ax by
Ay. What is the 2-dimensional master equation? What are the rates at which heat
flows across the vertical planes perpendicular to the x and y axes respectively. See
Fig. 3.10.

Figure 3.10

)

..
Answer: The two dimensional heat equation is - k|:5—5 + 5
X oy

ot

Remark 3.2. In practice, it is not possible to have a rod perfectly insulated
along sides of choice. Engineers therefore include additional terms to account for
the rates at which heat crosses the remaining bounding surfaces of a volume
under consideration. This leads to equations with more terms, but the idea remains
the same, and Fourier’s Law of Heat Conduction/Newton’s Law of Cooling typically
is still used to approximate the rates for heat flow across the bounding surface
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areas. Note that the right hand side of the master equation gives surface flux rates,
while the left hand side is the time rate of change of a volume quantity. Similar
results are obtained from the Fundamental Theorem of Calculus, Green’s Theorem,
Gauss’s Theorem, Stokes Theorem (including the Stokes Theorem generalized to
n-dimensions), as well as numerous applications of these ideas in physics, engineering
and other sciences. In each of these situations, the quantity defined in the higher
dimensional interior region is assumed to be conserved. The rate of change of the
interior quantity is therefore equal to a flux rate across the lower dimensional
bounding surfaces. See Fig. 3.11.

Figure 3.11

Of course, heat flux as defined by Newton and Fourier is only one type of flow.
Consequently, different results are obtained in both mathematics and applications
when differently defined flux terms are used.

3.5 FINDING SOLUTIONS TO THE HEAT EQUATION

ou(x,¢ 2u(x,,t
The 1-D heat equation for the rod described above is —y—%l——) =—k _aua(—le)
X

Finding solutions means finding functions u(x, ?) that satisfy the differential equation,
and that also satisfy any boundary conditions imposed by the physical situation.
We had supposed that the rod, of length L say, had been exposed to a heat source
at some initial time ¢ = 0. Recall, however, that we are also assuming that rod is
perfectly insulated. So, we assume that at the end points of the rod, the temperature
drops off to “room temperature”, which for present convenience we call zero.
Boundary conditions are then u(0, #) = 0 = u(L, f). What about the constant k?
Recall that the origin of k is in the derivation of Newton’s Law of Cooling/Fourier’s
Law of Heat Conduction. Since heat is dissipative, we can assime that — £ < 0, or
k> 0. Is there a way of keeping track of k£ > 0, without having to keep repeating
“% > (”? One way is to replace k > 0 by k = 1? for some real number 1].

We are looking for functions of two variables x and ¢. What do functions of two
variables look like? Where might we look to hopefully find candidates for solutions?
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Certainly, any combination such as x « £, 7(x* » £), x « ¢ + 7(x* » £), and so on, will
give two-variable functions. Evidently, we can obtain a special class of functions
of two variables (x, 7) by starting with products of the form p(x, y) = f(x) « g(?). It
may not be surprising that the technique of trying to find special solutions of the
heat equation of the form p(x, y) = f{x) « g(?) is called “separation of variables”.

Recall d’ Alembert’s result giving a general class of solutions of the wave equation.
Part of the derivation included the observation that the sum of two solutions to the
wave equation of the same class gives another solution of the wave equation. In a
similar way, suppose that we have two solutions to the heat equation, p,(x, £) and
P(x, 1). Evidently, since derivatives add and scalars factor through derivatives, we
also get that a;p, (x, £) + a,p,(x, 1) is a solution for any choice of scalars a,, a,. So,
if “separation of variables” can provide basic solutions of the form p(x, y) = f(x)
g(t), the strategy also will allow us to use those basic solutions to construct new
solutions by addition, and multiplication by scalars.

Let’s get started. Substituting p(x, y) = f(x) « g(?) into the heat equation y1e1ds
the equation fix) « g'(t) = ~ kf"(x) + g(1) = 771" (x) * g(9).

As long as fx) # 0, g(t) # 0, this gives % (x)_&()__ 7.
f(x) e)

The left side of this is a function of ¢ and the right side is a function of x. What
does this mean about the common ratio? Our assumption in the model was that
k= 772 is constant. However, to be sure that what we have so far is reasonable,
let’s look at this last equation a little more carefully. Is it possible that a ratio

f7(x) £'(t)
£(x) g(t)

terms of #? Changing x on the left side has no effect on the right side. But the right
side is identically equal to the left side. So, the left side doesn’t change either. It
follows that the common ratio does not depend on x. By symmetry of argument,
the ratio also does not depend on ¢. In other words, the only way for a function of
“x only”, to be identical to a function of “¢ only™, is for both of the functions to be

FW_g0__

the same constant. But, this is what we have in the equation -4 =222 =_

f(x) ()

which is only in terms of x can equal the ratio which is only in

Hence, so far so good.

Each of these ratios gives a differential equation of a single variable.
)+ f(x) =0
g'(1) + nzg(t) =0.
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What kind of function has the property that its derivative or derivatives are
proportional to the original function value? One type that you may have seen before

.is an exponential function. We therefore might try for functions of the form f{x) = %,

g(®) = &®. See also one of the standard undergraduate texts on differential equations.
From the first equation for f{x) = e%, we get ¢ + 77 = 0. The solution of this
algebraic equation is complex, &=+ 77,/ -1 =+7i . Using &= 7, the exponential

solution to the first equation is f{x) = e = cos 1x + i sin 7x. (We will say more
about Euler’s formula e™ = cos 7jx + i sin 7x in Chapter 4, Epilogue.)

Using exactly the same approach for g(¥) = 2 in go + nzg(t) =0, we get
4
B+ 1 =0,s0 g(t)=e"”2'.
If we substitute p(x, y)= f(x)+ g (¢)=(cosmx+i sinnx) e T = ¢ cos nx

ou (xl, t) ) 0*u (xl, t)
ot *

=0, we get that
ox?

+ie”"" sinx into the heat equation

. .
both the real part e cos nx and the imaginary part ¢~ 7" sin7x must also be

solutions in their own right. [This is because in addition to having the property that
solutions can be added and multiplied by scalars to produce more solutions (see
above), the heat equation itself has no complex coefficients.]

Exercise 3.8. Suppose that u(x, ), v(x, ?) are real valued functions, i = — 1,
and the complex function z(x, £) = u(x, ©) + iv(x, ) is a solution of the heat
equation. Show that both u(x, ¢) and v(x, f) are real valued solutions of the heat
equation.

2 a2 .

Continuing with the main discussion, since ¢ "* cos7x +ie”""' sinfx solves
the heat equation, we get that both ¢ cos 7x and ¢ sin 7x must also solve
the heat equation. We therefore get candidates for basic solutions of the form

pix, = f (x)- g(t). That is, p(x, t)= Ae"’zt cosnx , for some constant Ai or

p(x, ) = Be "' sinyx for some constant B.

We have used separation of variables to determine special basic forms for candidate
solutions to the heat equation. We have not yet made use of the boundary conditions.
The temperature at the end points is given by u(0, #) = 0 = u(L, #). For p(x, ?)

= Ae " coszx, this implies that 0= p(0.¢)= Ae T cosO= Ae™™ . Therefore,

A =0, and so a basic solution of the heat equation for the insulated rod whose left

end point is zero degrees can have no cosine functions in its solution. At the other
2 . « .

end point of the insulated rod, we get that Be™ * sinf) =0 . Since B is a freely



130 Pathways to Real Analysis

chosen constant, it follows that we will need sin 7L = 0. The length of the rod L is
one of the boundary conditions. We obtain, therefore, that 7L = nz, where n can
be any integer. In other words, we get relationships between the two parameters

nand L given by 5= ”, n an integer .

Recall that the strategy is to build solutions out of sums of scalar multiples of

2
{7
basic solutions. But, we have determined basic solutions p,(x, #) = B L

sm( Zx) n= n , nan integer . Along with Fourier, we now obtain candidates

nrw
7). (nm
for solutions of the heat equation of the form u x, ZB e ( L ) sin (ﬁzfj .

nez
. . * . . —,l 2t
To simplify the symbolism somewhat, we can also write u(x,1)= ZBne h
nez,

sin(7],x), where 7 = %

What does this mean about the heat flow in the rod? At time ¢ = 0, we get that

the initial heat distribution along the rod is given by u x, ZB sin 77,l

nez

As time increases, the exponential factors e in the series cause the
temperature at a location x to decay rapidly. This is consistent with macroscopic
experiment. See Fig. 3.12.

A
>

ameradmay,

Time t

Time ¢

Figure 3.12
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|
i
i
i
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3.6 FURTHER QUESTIONS ABOUT FOURIER'S HEAT
EQUATION AND FOURIER'S SERIES

Is there anything special about the temperature distribution A(x) = u(x, 0)? In fact,
we made no initial assumptions about this function. Suppose that instead of being
given temperatures at the end points with boundary conditions u(0, #) = u(L, f)=
0, we are given initial conditions in terms of the spatial gradient of the temperature.
For example, we might suppose that the temperature reaches a local minimum at

. du ou
the end points, and so 5—(0, t)= w —(L,£)=0. In that case, exactly the same
X
4
approach that we just used will give a somewhat different solution. Instead of a
sum with sine functions dependent on x, we would get a sum with cosine functions

dependent on x.
Exercise 3.9. Do this calculation.

In other words, different boundary conditions can result in series with sine
functions, cosine functions, and even combinations of both. And, since we made
no special initial assumptions about the temperature distribution function A(x) =
u(x, 0), these observations lead to the following mathematical question:

Question 3.1. Given a function A(x) defined on an interval 0 < x < L, can we

- , nx . (nm
find coefficients A,, B, such that h(x)= ZA,, COS(T xj + ZBn sin (—1-4— x) ?

neZ neZ

We can simplify this expression somewhat, by using the symmetries of the sine
and cosine functions. Recall that cos(~ &) = cos(6) and sin(- 0) =—sin(6). Therefore,
without loss of generality, we can assume that the sum is over only the non-
negative integers. We can also assume that the length of the rod is L = 2 7. Otherwise
we can just rescale our units of length. The question then regards the existence of

coefficients A,, B, such that h(x ZA,, cos(nx)+ ZB,, sin (nx
€

More explicitly, this is
h(x) = [ A + A cos(x) + A, cos (2x)+---]+[ B;sin(x)+ B, sin (2x)+- -]

There is no doubt about Fourier’s point of view. Suppose that we are given any initial
heat distribution function A(x). According to Fourier’s conjecture, there exist constants

Ap A, Ay, ... and By, By, ... such that k(x)=] 4, + A cos(x) + Ay cos(2x) + -]
+ [Bl sin(x) + B, sin(2x)+---].

Fourier’s prescription for how to identify the coefficients A,, B, was in fact a main
catalyst for the development of increasingly adequate theories of integration, through
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the 19 century, and then into the 20t century with the work of Lebesgue. To get
some idea of how this all started, note that part of the problem is to find coefficients

A, B, so that we get the interpolation 4(x)= Z 4, cos(nx) + 2 B, sin(nx). How
neN neN

might we approach this?

In the game of chess, one can.only use moves that are part of the game. In a
mathematical context, the same principle can apply. The allowed moves are
operations, and in the present context, the allowed operations can be those of
algebra, differentiation, integration or limits of results of these. But we are looking
for a way to produce numbers Ay, 4;, 4,, ... and By, By, B;, ... from the function
h(x). Which of the operations just mentioned takes a function and produces a
number? That helps focus the problem somewhat. For the question now becomes,
“Can we find strategic integrals to produce these coefficients?” Some of the
interpolating trigonometric functions are given in Fig. 3.13.

Ay=sinx A Yy=cosx
N + |+ N
> -1 — 7 1
- \ - _i

3.13 (a) Y 313(0)

4ky=sin2x
WA
3.13 (c)

A y=sn2x

A
VIV,

3.13 (d)

Figure 3.13

n V4
From parts (a) and (b) of the diagram, one may see that J. cos xdx=0, I sin xdx=0.

- -

Of course, calculation confirms this.
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V4
What about Isin2x sinxdx ? See Figure 3.13 (c) and (d). Again from the

: -z
diagram, one may see that the integral is zero. The product y = sin 2x sin x is
(i) even; and (ii) symmetrically out of phase in such a way that total areas above
the x — axis are compensated by the total areas below the x — axis. This implies

n
that Jsin2x sinxdx=0. Continuing in the same way, we conjecture that

-
H
b4
. 0, m#n
J sinmx smnxdx={

T, m=n#0"
-

If we multiply a cosine by a sine, then the two functions are again symmetri-

4
cally out of phase, and we get | cosmx sinnxdx=0. Similarly, we also get that
y P

-

x 0, m#n
J. cosmx cos nxdx =

Z, m=n#0
-

Putting these observations together we obtain the following table that appears in
standard discussions of Fourier analysis: - :

1 ¥ 4
——Jcosm.xsinnxdx =0
T
-
0, m#n

1 T
— Jco c dx =
7;_.[0 S MX COS NX {1’ memnt0

F2
0, m#n

V.4
l Isinmxsinnxdx =
T 1, m=n#0

-

To prove these formulas, one may use the classical trigonometric identities that
replace a product of a sine and/or cosine by a sum of a sine and/or cosine. For

example, cosnx cosmx = % (cos(n + ) x +cos(n - J) x)-

Exercise 3.10. Verify the formulas in the table just given.

This collection of identities-from the table gives us a way to evaluate the
coefficients A,, B, that we seek. In other words, we obtain candidates for
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coefficients for trigonometric interpolation of the function 4(x) as a limit of finite
sums of trigonometric functions:

h(x) = ZA,, cos (nx) + ZB,, sin(nx).

ne

As an example, suppose that know in advance that a function (x) = A, cos (x)
+ B, sin (3x). Then, using the above identities it follows that

1 b4

A= p _J;[Al cos(x)+ By sin(3x)] cos xdx
1 T

By = —~ _J;[Al cos(x)+ By sin (3x) ] sin 3xdx

1 V4
0= p _J;[Al cos(x) + B sin (3x) | cos nxdx
' forn#1,3

1 V4
0= p J;[Al cos(x)+ By sin (3x)| sin nxdx

More generally, if a function A(x)= Z A, cos(nx)+ 2 B, sin(nx), then we get
ne ne

A, = ;Ir- :[ EA,‘ cos(nx)+ ZB,, sin(nx)] cos nxdx
B, = % _J Z A, cos(nx) + an sin (nx)jI sin nxdx

. This leads to Fourier’s formulas for calculating the coefficients of a trigonometric
interpolation:

A =

n

e L]

% h(x) cos nxdx

8

z
B, = % J.h(x)sinnxdx
-7

As we have just done, these formulas can be obtained through the techniques
and symbolism of basic calculus. But, just as in the early days of infinite series, we
need to ask what these symbolic calculations could mean? What is the meaning of
these integrals? So far, the function A(x) has been more or less arbitrary. How can
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the integrals involving A(x) be evaluated? Fourier was before Cauchy, and so there
was not yet any independent definition of integration. Motivated by the early versions
of the Fundamental “Theorem” of Calculus, Fourier’s contemporaries defined
integration as an inverse to differentiation. In other words, the integral was defined as

2
the “anti-derivative”. But, using that definition, what is the integral of A(x) = € *,

orof A(x)= e e (sin x) 2 In many cases, finding explicit formulas for some anti-

derivatives did not seem possible. This was problematic to the early architects of
analysis. Among other things, the very meaning of “function” came under scrutiny.
In fact, hindsight reveals that the operatjonal definition of integral is highly significant,
for it shows an early (though not as yet matured) grasp of the possibility of defining
objects in terms of operations. That way of thinking flowered in the much later
developments of abstract algebra. For the immediate purpose of solving the heat
equation, though, the need for an independent definition of integral became
increasingly evident. ‘

Additional features of the problem are revealed in the interplay between Fourier’s
heat flow experiments, mathematical modeling through the heat equation, and boundary
conditions. Fourier’s mathematical conjectures were challenged by Lagrange and

n ]
others, but the formulas 4, = I h(x) cosnxdx, B, = j h(x)sinnxdx allowed
-7 -z

1 1
7 /4
Fourier to easily and consistently verify his intriguing formulas to be consistent
with laboratory results.

As already mentioned, a real metal rod cannot be perfectly insulated, and the
temperature drop takes place within an insulating boundary layer. See Fig. 3.14.

u = temp
Right
End
Left Point
end / x=L
point A
"x=0
Insulating
layers have
width

Figure 3.14
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The thinner and more efficient the insulating layer, the more extreme the
temperature drop. A common mathematical model is for the “ideal” case where the
insulating layer has zero width, and the drop in temperature is discontinuous. See
Fig. 3.15.

u=temp
Right
. End
Left Point
end x=L
point \ /
x=0
Insulating
layers have
no width
Figure 3.15

Perhaps' the simplé;st test case for modeling this idealization would be a
temperature function that is constant within a rod, and zero outside the rod. Keeping
to a standard reference interval of length 27, consider, therefore, the function f(x)
_J0 —7<x<0

1 O<x<rm '

0 —-7<x<0
1 O0<x<nrm

the Fourier interpolating functions indicated below. You may find it helpful to
consult one of the many websites that have these calculations (and more) well
illustrated. See, for example, http://mathworld. wolfram.com/FourierSeries.html.
See also Figure 3.16. ’

(@) F(x)= 4+ A cos(x)+ B;sin(x)

(b) F,(x)= A+ A cos(x)+ B;sin(x)+ A,cos(2x)+ B, sin(2x)

Exercise 3.11. For the function f{x) = { , calculate and graph

(
© F(x)= ) (
(d) F,(x)=4,+ A cos(x)+ Bysin(x)+---+ A, cos(4x)+ B, sin(4x)
@ F(x)= (

Ay + A cos(x)+ By sin(x) + -+~ + Ay cos(3x) + By sin (3x)

Ay + A cos(x)+ Bsin(x) +--- + A cos(5x) + By sin (5x)
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(f) Fy(x)= Ay + A cos(x)+B;sin(x)+- + Acos(6x) + Bgsin (6x)

(8) F;(x)= 4y + A cos(x)+ Bsin(x)+:-+ A; cos(7x)+ B, sin(7x)

\ vV
' Figure 3.16

There are many other standard examples for heat distribution functions, where
an idealized perfectly insulated rod is modeled by a function that has discontinuous
jumps at the end points.

Numerous issues arise connected with Fourier’s conjecture: How does one
prove the convergence of a trigonometric series? There are examples where at x = 7
say, both the left and the right hand limits exist, but are not equal, and neither of
these equal the Fourier series when evaluated at x = 7. What kind of function could
that be, and how does one integrate such a function. How does one differentiate a
Fourier trigonometric series? Even though the summands are all sine and cosine
functions, and therefore term by term differentiable, the limit of a Fourier series
can be a discontinuous function that is not differentiable anywhere.

Among other things, Fourier’s formulas implied the need for a way to integrate
functions that have (sometimes infinitely) many discontinuities. To help explore
these issues, as well as the very notion of “function”, G. L. Dirichlet (1805 — 1859)
introduced certain explicitly given test case functions that were differently defined
on the rational numbers than on the irrational numbers. For example, there is the

I xe
0
Riemann integral was an improvement over the Cauchy definition, the Riemann

integral also does not exist for all functions that arise in mathematical and physical
applications.

. This example revealed that even though the

now-familiar f(x)= {

You may recall that the Riemann integral is defined as the limit of finite sums of
the form 2 f ( X1 =% ), where x, < x; < ... < x,, is a partition of the interval,

and for each i, the number ¢, satisfies x; < ¢; < x; , ;. This limit is defined relative to
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decreasing mesh size (where “mesh size™ is defined as the maximum width of the
lengths (x; . —x)), (i=1, 2, ..., n). Restrict to the unit interval, 0 < x < 1, and let
¥1> 2, I3, ... be a listing of the rational numbers in the interval. If we use the
rational numbers as the reference points ¢, in the definition of the Riemann integral,

I xe@Q
0 xeQ

with the definition of the Riemann integral, we may use another partition of arbitrarily
small mesh size, where the reference points in the Riemann sum are irrational
numbers. In that case, the partial sums are all zero. It follows that the Riemann
integral does not exist for this function. At the same time, this is an indication that
in order to work with the larger collection of subtleties emergent in Fourier series,
a new definition of integral was needed.

then the partial sums of f (x) = { converge to unity. However, in keeping

Note that a key element in the definition of both the Riemann and the Cauchy
integrals is “length” of an interval (x; , ; —x;). Evidently, if there are two intervals,
then the total “length” of their union is less than or equal to the sum of their individual
lengths. Consider, however, the set of rational numbers r,, 75, 3, ... in the unit
interval 0 <x< 1. Let £> 0 be any small positive number, and construct the collection

of open intervals (r, ST r—-

£ ) Each of these intervals has length and
so using the geometric series Z% , the partial sums of their lengths are less than

or equal to £+£2+ S +L2+ 4L <&(l)=¢ .t would seem that
2 2 2" 2 2 2"

in some sense the rational numbers can be contained in a set that has “total length”

less than &. Since & was arbitrary, it would follow that the total length of the set of

rational numbers would have to zero.

This line of questioning led to Lebesgue’s integration theory in the early 1900s,
with his definition of integral as a way of “measuring” lengths, areas and volumes
that need only be defined “almost everywhere”.

In [http://www-history.mcs.st-andrews.ac.uk] we find the following:

Lebesgue formulated the theory of measure in 1901 and in his famous paper
Sur une généralisation de l’intégrale définie, which appeared in the Comptes Rendus
on 29 April 1901, he gave the definition of the Lebesgue integral that generalizes
the notion of the Riemann integral by extending the concept of the area below a
curve to include many discontinuous functions. This generalization of the Riemann
integral revolutionized the integral calculus. Up to the end of the 19% century,

. mathematical analysis was limited to continuous functions, based largely on the
Riemann method of integration.
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In [Hawkins] we find:

What made the new definition important was that Lebesgue was able to recognize
in it an analytic tool capable of dealing with - and to a large extent overcoming - the
numerous theoretical difficulties that had arisen in connection with Riemann’s
theory of integration. In fact, the problems posed by these dlfﬁcultles motivated all
of Lebesgue’s major results.

‘Lebesgue resolved many of these difficulties, and provided finally the analytic
results needed for a correct formulation of the Fourier series and their analysis.

‘Remark 3.1. Using separation of variables led to two differential equations,
each of a single variable. Our approach for the single variable equations was to
look for a solutions of the form f{ix) = e%, g(x) = A This in fact is a special case
of the approach developed by L. Euler (1707 — 1783) in 1739 [Katz, 556-557].

dny, dn—ly
n +a'l-1 dxn—l

Suppose that we have a differential equation of the form a,

++aq Zx +a, y=0. Looking for a solution of the form f(x) = e produces the

algebraic equation for the exponent ¢, namely, a,@" +a,_,d' '+ --- + g+ q,
= 0. This polynomial equation is now called the “characteristic equation”.

Exercise 3.13. Use the method of separation of variables to find solution forms

. aZY(x,t)_. 32 ( )32 ( ) 82 82 as
for the wave equations —_8t2 | = ﬂ EYCI 8t2 EY E)y

11 as the t iable heat equation du =—k o’ + o
arla e — ————— — .
well as the two v q o W ay2

Notes 3.1: Fourier did not succeed in proving his conjecture. Still, his
posthumous notes point in the right direction, and led mathematicians of the day to
more adequately investigate length, volume, integration and differentiation. Fourier’s
results on heat flow, and on using trigonometric series to obtain solutions to his
heat equation, revealed the need for a better understanding of the meanings of
convergence, differentiation and of integration. His work ultimately led to a new
stage in the development in mathematics, namely, the emergence of 19 and 20%
century real and harmonic analysis. “Few other works have had such a profound
influence on subsequent developments in mathematics as (Fourier’s)... Théorie
Analytique” [Katz, 629]. See also [Bressoud, 1-6].
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,Comp\‘lex Numbers, Complex Analysis and Beyond

G. Cardano (1501 - 1576) was an Italian algebraist of the early 16" century.
Among other things, he wrote on solving equations, and in particular is known for
giving a general solution to the cubic equation in terms of radicals. His work
included calculations involving the square roots of negative numbers [Katz, Ch.
9]. Cardano’s work was not always expressed in the clearest of terms; and notation
was still being developed. Bombelli (1526 — 1572) improved on the presentation of
some of Cardano’s work, and also made his own contributions to early algebra.
Bombelli’s work also included calculations involving square roots of negative

numbers. For example, he wrote the equivalent of /-3 /-3 =~3.

The square root of a negative number was sometimes called “imaginary”. If
one imagines numbers as lengths, it becomes challenging to represent the square
root of a negative number. And starting from the already known integers, rational
numbers, or even irrational numbers, algebraic operations cannot produce a square
root of a negative number. Indeed, if a is any resulting rational or irrational number,
then a? > 0. However, the square root of a negative number can be defined in a
similar way to how other more familiar numbers are defined.

To see this, first recall that the “0” was introduced historically to balance
commerce books. Mathematically this amounted to solving arithmetic problems
such as 5 + ? = 5, and more generally a + ? = a. Negative numbers appeared as
solutions to problems such as 5 + ? = 0, and more generally (@ > 0) + b = 0.
Fractions (or “rational” numbers) are solutions to integer ratio equations like (?) 5
= 3, and more generally xb = a. It has been known since ancient times that the

positive solution ﬁ of x> = 2 is not rational. More generally, if b > 0 is any

positive integer that is not a perfect square, then the solutions of x> = b are not
rational. '
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There has been a pattern then of gradually adding new numbers, when the new
numbers are obtained as solutions of equations. Therefore, allowing square roots
of negative numbers was, in that sense, a creative but also natural step to take.
Indeed, in the work of both Cardano (1501 — 1576) and Bombelli (1526 — 1572),

‘/ -3 is essentially defined as a solution to the equation x* =—3 or x*> + 3 = 0.

De Moivre (1667 — 1754) discovered the formula (cos x + i sin x)" = cos nx + i

sin nx, where n is a non-negative integer and i= J ~1. This can be proved by

induction, a proof technique which was known at least as far back as the 14"
century in Europe, and before that in 4slamic mathematics [Katz, Ch. 9].

It is fairly straightforward to extend De Moivre’s formula to fractional exponents,

, » .
In other words, for integers p, g we have (cosx +isinx)q = cos(—g) x+ ism(ﬁj x.
q

q
For example, since for any x we have that (cos x + i sin x)° = cos 3x + i sin 3x, it

3 .
follows that .(cos % +isin %) = cos|:3(§):| + isin [3(—;—6-)} =cosx+isinx. We

L X . . .
therefore get that cos g +isin 3 is a cube root of cos x + i sin x. For negative

. R 1
exponents, start with the case (cosx+zsmx) = osrriene By complex

conjugation, this is cos x — i sin x = cos(— x) + i sin(— x). For (cos x + i sin x)~ 2 we
2
then have [(cosx +1 sinx)"l} = |:cos (—x)+isin (—x):l2 =cos (—2x) +isin (—-2x)

And so on. There are details of course. It is a good exercise to prove the general
case. ’

At this point in the story, there is the emergence of two distinct (though related)
branches of mathematical development. One branch leads to complex analysis;
and the other branch leads to algebraic equations, the work of Galois, group theory
and abstract algebra. ’

To get to complex analysis, note that in the early 18® century, L. Euler (1707-
1783) showed that &* + ¢~ * solved the differential equation as 2 cos x; and obtained
a corresponding result for ¢* + ¢™* and 2 sin x. Taking solutions of these differential
equations to be unique, he made the identifications & + ¢ *=2 cos xand &* —&™
=2 sin x. Straightforward algebra then implies that ™ = cos x + i sin x [Katz, 557].
It follows that for any real number ¢, (¢¥)* = ¢’ = cos ox + i sin owx, which
therefore extends De Moivre’s formula to arbitrary real exponents.

¢
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However, there is the question of validity. One possible contemporary approach
would be to use the fact that any real number can be approximated by a sequence
of rational numbers, and apply continuity arguments to De Moivre’s formula.
Appealing to continuity, however, would require limit theorems for functions that
in Euler’s time did not yet exist. In fact, Euler’s derivation is pnmanly symbohc
technique and algebraic. He formally calculated derivatives of * + ¢~ and ¢* — & ¥,
The results of his calculations were certainly useful and showed that these
exponential terms with complex exponents could be handled consistently with
other known real quantities. What was lacking though was an independent definition
of the exponential terms e”.

Later, from Cauchy’s (1789-1857) work on convergence, it became possible to
define the radius of convergence of a power series of real numbers. But, since a

complex number z = a + ib has length | Z | =y a® +b* , it is also became possible

to define the radius of convergence of a power series in the complex variable
z = a + ib. But that means that we can then define ¢ to be the unique complex
number determined by substitution z = ix into the absolutely convergent series

hd n
Z—Z— It can be shown that when there is absolute convergence, the series is
n!
n=0
well defined, in the sense that rearrangement of terms does not change the limit
value of finite sums. Therefore, we may collect the real and imaginary parts and

. i Deﬁmtlon = (ix x4 i x3 x5
obtain e Z (1—E+z+ ]+z(x—§7+§+--- . One may

now observe that the real and imaginary parts ¢ are the absolutely convergent
Taylor series for the real cosine and sine functions respectively. (See Example
2.27 above.) We therefore get obtain that ¢” = cos x + i sin x, and by the same
token extend both De Moivre’s formula and Euler’s result.

We can add and multiply complex numbers; the operations for complex numbers
extend and are compatible with the underlying real numbers; and complex numbers
have length. Because of these properties, Cauchy was able to develop a differential and
integral calculus for functions of a complex variable z = x + iy. To see this, let {z)
= u(x, y) + iv(x, y). Just like the derivative of a real valued function, the derivative

F1z) (2) was defined as a limit of ratios lim )~ 1) (&)-1 (ZO) .

of a complex function
Z 77 Z— 2

Note that complex numbers are like vectors in a plane. For, in terms of real
numbers, a complex number z = a + ib has two components. This has reaching
implications for the differential calculus of complex functions. If the derivative of
a complex function exists, then since the limit is defined in terms of the “two

—
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dimensional” distance, the limit lim M
22 Z—2

is independent of the direction

of approach z — z;. In particular, the limit of the ratio along the z=x +i0 = x
direction must, by definition, be the same as the limit of the ratio along the z =0 +
iy = iy direction; and both of these must be the same as the limit along any other
direction. This independence of direction imposes a symmetry on the real and
complex parts of a differentiable complex function f{z) = u(x, y) + iv(x, y). Indeed,
following this argument, straightforward calculations show that if the complex
function f(z) = u(x, y) + iv(x, y) is differentiable, then the two functions u(x, y)

‘and v(x, y) must satisfy what are now called the Cauchy-Riemann equations

du ov ou ov

— and — =—— The Cauchy-Riemann equations have played an important
x

x oy dy

role in the development of complex analysis and the theory of analytic functions.

Another branch of mathematics also emerged from the discovery of complex
numbers. Continuous with the work of Cardano and other algebraists, there was
the on-going development of algebraic equations and algebraic numbers. The young
genius Galois (1811 — 1832) discovered the “group of the equation” [Katz, 667].
The implications of Galois’ discovery are being explored to this day. The algebraic
work of Galois, the complex analysis coming from Cauchy’s results, and principles
of real analysis have reunited in various branches of modern mathematics of the
20" and 21% centuries. Going further into these matters, however, would take us
well beyond the scope of this elementary text.
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